Numerical solutions of an optimal control problem governed by a Ginzburg-Landau model in superconductivity
文献类型:期刊论文
作者 | Chen, ZM; Hoffmann, KH |
刊名 | NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
![]() |
出版日期 | 1998 |
卷号 | 19期号:7-8页码:737-757 |
关键词 | superconductivity finite element method exterior penalty function method |
ISSN号 | 0163-0563 |
英文摘要 | A numerical method to solve a constrained optimal control problem governed by a generalized Ginzburg-Landau model which describes the phase transitions taking place in the superconducting thin films with variable thickness. The method is based on a finite element method to approximate the state equations and an exterior penalty function algorithm to solve the discrete optimal control problem. The convergence of the discrete optimal solutions to the continuous optimal solutions and the convergence of the exterior penalty function algorithm are proved. The objective of the work is to study efficient numerical methods for exploring the possibilities of controlling the motion of vortices in the superconducting thin films through the external magnetic field. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000075791700004 |
出版者 | MARCEL DEKKER INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/13577] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.Acad Sinica, Inst Math, Beijing 100080, Peoples R China 2.Tech Univ Munchen, Lehrstuhl Angew Math, D-80335 Munchen, Germany |
推荐引用方式 GB/T 7714 | Chen, ZM,Hoffmann, KH. Numerical solutions of an optimal control problem governed by a Ginzburg-Landau model in superconductivity[J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION,1998,19(7-8):737-757. |
APA | Chen, ZM,&Hoffmann, KH.(1998).Numerical solutions of an optimal control problem governed by a Ginzburg-Landau model in superconductivity.NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION,19(7-8),737-757. |
MLA | Chen, ZM,et al."Numerical solutions of an optimal control problem governed by a Ginzburg-Landau model in superconductivity".NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 19.7-8(1998):737-757. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。