A formula to determine zero-dimensional ideals being annihilating ideals of linear recurring arrays
文献类型:期刊论文
作者 | Lu, PH; Liu, ML |
刊名 | ALGEBRA COLLOQUIUM
![]() |
出版日期 | 1999-09-01 |
卷号 | 6期号:3页码:349-360 |
关键词 | linear recurring arrays annihilating ideals localization cyclic modules Grobner bases |
ISSN号 | 1005-3867 |
英文摘要 | Let F be a field, F[X] the polynomial ring over F in n indeterminates x(1),..., x(n), and X = (x(1),...,x(n)). Let I be a zero-dimensional ideal of F[X]. In this paper, we show that I is the annihilating ideal of an n-dimensional linear recurring array over F if and only if I satisfies the formula dim(F)((I : root I)/I) = dim(F)(F[X]/root I). The two sides of the formula can be feasibly computed by some typical algorithms from the theory of Grobner bases. 1991 Mathematics Subject Classification: 11B50. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000085277400012 |
出版者 | SPRINGER VERLAG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/14201] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Lu, PH |
作者单位 | Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Lu, PH,Liu, ML. A formula to determine zero-dimensional ideals being annihilating ideals of linear recurring arrays[J]. ALGEBRA COLLOQUIUM,1999,6(3):349-360. |
APA | Lu, PH,&Liu, ML.(1999).A formula to determine zero-dimensional ideals being annihilating ideals of linear recurring arrays.ALGEBRA COLLOQUIUM,6(3),349-360. |
MLA | Lu, PH,et al."A formula to determine zero-dimensional ideals being annihilating ideals of linear recurring arrays".ALGEBRA COLLOQUIUM 6.3(1999):349-360. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。