中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A formula to determine zero-dimensional ideals being annihilating ideals of linear recurring arrays

文献类型:期刊论文

作者Lu, PH; Liu, ML
刊名ALGEBRA COLLOQUIUM
出版日期1999-09-01
卷号6期号:3页码:349-360
关键词linear recurring arrays annihilating ideals localization cyclic modules Grobner bases
ISSN号1005-3867
英文摘要Let F be a field, F[X] the polynomial ring over F in n indeterminates x(1),..., x(n), and X = (x(1),...,x(n)). Let I be a zero-dimensional ideal of F[X]. In this paper, we show that I is the annihilating ideal of an n-dimensional linear recurring array over F if and only if I satisfies the formula dim(F)((I : root I)/I) = dim(F)(F[X]/root I). The two sides of the formula can be feasibly computed by some typical algorithms from the theory of Grobner bases. 1991 Mathematics Subject Classification: 11B50.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000085277400012
出版者SPRINGER VERLAG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/14201]  
专题中国科学院数学与系统科学研究院
通讯作者Lu, PH
作者单位Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Lu, PH,Liu, ML. A formula to determine zero-dimensional ideals being annihilating ideals of linear recurring arrays[J]. ALGEBRA COLLOQUIUM,1999,6(3):349-360.
APA Lu, PH,&Liu, ML.(1999).A formula to determine zero-dimensional ideals being annihilating ideals of linear recurring arrays.ALGEBRA COLLOQUIUM,6(3),349-360.
MLA Lu, PH,et al."A formula to determine zero-dimensional ideals being annihilating ideals of linear recurring arrays".ALGEBRA COLLOQUIUM 6.3(1999):349-360.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。