A quasi-wavelet algorithm for second kind boundary integral equations
文献类型:期刊论文
作者 | Chen, HL; Peng, SL |
刊名 | ADVANCES IN COMPUTATIONAL MATHEMATICS
![]() |
出版日期 | 1999 |
卷号 | 11期号:4页码:355-375 |
关键词 | periodic quasi-wavelet integral equation multiscale |
ISSN号 | 1019-7168 |
英文摘要 | In solving integral equations with a logarithmic kernel, we combine the Galerkin approximation with periodic quasi-wavelet (PQW) [4]. We develop an algorithm for solving the integral equations with only O(N log N) arithmetic operations, where N is the number of knots. We also prove that the Galerkin approximation has a polynomial rate of convergence. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000083861000005 |
出版者 | BALTZER SCI PUBL BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/14447] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.Acad Sinica, Inst Math, Beijing 100080, Peoples R China 2.Acad Sinica, Inst Automat, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, HL,Peng, SL. A quasi-wavelet algorithm for second kind boundary integral equations[J]. ADVANCES IN COMPUTATIONAL MATHEMATICS,1999,11(4):355-375. |
APA | Chen, HL,&Peng, SL.(1999).A quasi-wavelet algorithm for second kind boundary integral equations.ADVANCES IN COMPUTATIONAL MATHEMATICS,11(4),355-375. |
MLA | Chen, HL,et al."A quasi-wavelet algorithm for second kind boundary integral equations".ADVANCES IN COMPUTATIONAL MATHEMATICS 11.4(1999):355-375. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。