中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
(2, k)-Factor-critical graphs and toughness

文献类型:期刊论文

作者Cai, MC; Favaron, O; Li, H
刊名GRAPHS AND COMBINATORICS
出版日期1999
卷号15期号:2页码:137-142
ISSN号0911-0119
英文摘要A graph is (r, k)-factor-critical if the removal of any set of k vertices results in a graph with an r-factor (i.e. with an r-regular spanning subgraph). We show that every tau-tough graph of order n with tau greater than or equal to 2 is (2,k)-factor-critical for every non-negative integer k less than or equal to min{2 tau - 2, n - 3}, thus proving a conjecture as well as generalizing the main result of Liu and Yu in [4].
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000081517700002
出版者SPRINGER VERLAG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/14483]  
专题中国科学院数学与系统科学研究院
作者单位1.Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
2.Univ Paris Sud, LRI, F-91405 Orsay, France
推荐引用方式
GB/T 7714
Cai, MC,Favaron, O,Li, H. (2, k)-Factor-critical graphs and toughness[J]. GRAPHS AND COMBINATORICS,1999,15(2):137-142.
APA Cai, MC,Favaron, O,&Li, H.(1999).(2, k)-Factor-critical graphs and toughness.GRAPHS AND COMBINATORICS,15(2),137-142.
MLA Cai, MC,et al."(2, k)-Factor-critical graphs and toughness".GRAPHS AND COMBINATORICS 15.2(1999):137-142.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。