(2, k)-Factor-critical graphs and toughness
文献类型:期刊论文
作者 | Cai, MC; Favaron, O; Li, H |
刊名 | GRAPHS AND COMBINATORICS
![]() |
出版日期 | 1999 |
卷号 | 15期号:2页码:137-142 |
ISSN号 | 0911-0119 |
英文摘要 | A graph is (r, k)-factor-critical if the removal of any set of k vertices results in a graph with an r-factor (i.e. with an r-regular spanning subgraph). We show that every tau-tough graph of order n with tau greater than or equal to 2 is (2,k)-factor-critical for every non-negative integer k less than or equal to min{2 tau - 2, n - 3}, thus proving a conjecture as well as generalizing the main result of Liu and Yu in [4]. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000081517700002 |
出版者 | SPRINGER VERLAG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/14483] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China 2.Univ Paris Sud, LRI, F-91405 Orsay, France |
推荐引用方式 GB/T 7714 | Cai, MC,Favaron, O,Li, H. (2, k)-Factor-critical graphs and toughness[J]. GRAPHS AND COMBINATORICS,1999,15(2):137-142. |
APA | Cai, MC,Favaron, O,&Li, H.(1999).(2, k)-Factor-critical graphs and toughness.GRAPHS AND COMBINATORICS,15(2),137-142. |
MLA | Cai, MC,et al."(2, k)-Factor-critical graphs and toughness".GRAPHS AND COMBINATORICS 15.2(1999):137-142. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。