中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A non-interior continuation method for generalized linear complementarity problems

文献类型:期刊论文

作者Peng, JM; Lin, ZH
刊名MATHEMATICAL PROGRAMMING
出版日期1999-12-01
卷号86期号:3页码:533-563
关键词generalized linear complementarity problem non-interior continuation method Newton method Q-quadratical convergence
ISSN号0025-5610
英文摘要In this paper, we propose a non-interior continuation method for solving generalized linear complementarity problems (GLCP) introduced by Cottle and Dantzig. The method is based on a smoothing function derived from the exponential penalty function first introduced by Kort and Bertsekas for constrained minimization. This smoothing function can also be viewed as a natural extension of Chen-Mangasarian's neural network smooth function. By using the smoothing function, we approximate GLCP as a family of parameterized smooth equations. An algorithm is presented to follow the smoothing path. Under suitable assumptions, it is shown that the algorithm is globally convergent and local Q-quadratically convergent. Few preliminary numerical results are also reported.
WOS研究方向Computer Science ; Operations Research & Management Science ; Mathematics
语种英语
WOS记录号WOS:000084702000006
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/14891]  
专题中国科学院数学与系统科学研究院
通讯作者Peng, JM
作者单位1.Acad Sinica, Inst Computat Math & Sci Comp, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China
2.Jilin Univ, Dept Math, Changchun 130023, Peoples R China
推荐引用方式
GB/T 7714
Peng, JM,Lin, ZH. A non-interior continuation method for generalized linear complementarity problems[J]. MATHEMATICAL PROGRAMMING,1999,86(3):533-563.
APA Peng, JM,&Lin, ZH.(1999).A non-interior continuation method for generalized linear complementarity problems.MATHEMATICAL PROGRAMMING,86(3),533-563.
MLA Peng, JM,et al."A non-interior continuation method for generalized linear complementarity problems".MATHEMATICAL PROGRAMMING 86.3(1999):533-563.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。