中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A QP-free constrained Newton-type method for variational inequality problems

文献类型:期刊论文

作者Kanzow, C; Qi, HD
刊名MATHEMATICAL PROGRAMMING
出版日期1999-05-01
卷号85期号:1页码:81-106
关键词variational inequality problem Newton's method semismoothness global convergence quadratic convergence strong regularity
ISSN号0025-5610
英文摘要We consider a simply constrained optimization reformulation of the Karush-Ruhn-Tucker conditions arising from variational inequalities. Based on this reformulation, we present a new Newton-type method for the solution of variational inequalities. The main properties of this method are: (a) it is well-defined for an arbitrary variational inequality problem, (b) it is globally convergent at least to a stationary point of the constrained reformulation, (c) it is locally superlinearly/quadratically convergent under a certain regularity condition, (d) all iterates remain feasible with respect to the constrained optimization reformulation, and (e) it has to solve just one linear system of equations at each iteration. Some preliminary numerical results indicate that this method is quite promising.
WOS研究方向Computer Science ; Operations Research & Management Science ; Mathematics
语种英语
WOS记录号WOS:000081702900005
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/14915]  
专题中国科学院数学与系统科学研究院
通讯作者Kanzow, C
作者单位1.Univ Hamburg, Inst Appl Math, D-20146 Hamburg, Germany
2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Kanzow, C,Qi, HD. A QP-free constrained Newton-type method for variational inequality problems[J]. MATHEMATICAL PROGRAMMING,1999,85(1):81-106.
APA Kanzow, C,&Qi, HD.(1999).A QP-free constrained Newton-type method for variational inequality problems.MATHEMATICAL PROGRAMMING,85(1),81-106.
MLA Kanzow, C,et al."A QP-free constrained Newton-type method for variational inequality problems".MATHEMATICAL PROGRAMMING 85.1(1999):81-106.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。