An upwinding mixed finite element method for a mean field model of superconducting vortices
文献类型:期刊论文
作者 | Chen, ZM; Du, Q |
刊名 | ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE
![]() |
出版日期 | 2000-05-01 |
卷号 | 34期号:3页码:687-706 |
关键词 | mean field model superconductivity vortices mixed finite element unstructured grid convergence analysis |
ISSN号 | 0764-583X |
英文摘要 | In this paper, we construct a combined upwinding and mixed finite element method for the numerical solution of a two-dimensional mean field model of superconducting vortices. An advantage of our method is that it works for any unstructured regular triangulation. A simple convergence analysis is given without resorting to the discrete maximum principle. Numerical examples are also presented. Mathematics Subject Classification. 65N99, 82D55. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000087866500009 |
出版者 | E D P SCIENCES |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/15379] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Chen, ZM |
作者单位 | 1.Acad Sinica, Inst Math, Beijing 100080, Peoples R China 2.Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China 3.Iowa State Univ Sci & Technol, Dept Math, Ames, IA 50011 USA |
推荐引用方式 GB/T 7714 | Chen, ZM,Du, Q. An upwinding mixed finite element method for a mean field model of superconducting vortices[J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE,2000,34(3):687-706. |
APA | Chen, ZM,&Du, Q.(2000).An upwinding mixed finite element method for a mean field model of superconducting vortices.ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE,34(3),687-706. |
MLA | Chen, ZM,et al."An upwinding mixed finite element method for a mean field model of superconducting vortices".ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE 34.3(2000):687-706. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。