Uniform convergence and two-level Schwarz method for Carey non-conforming element method for non-self-adjoint and indefinite problems
文献类型:期刊论文
作者 | Chen, JR |
刊名 | COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING
![]() |
出版日期 | 2000-04-01 |
卷号 | 16期号:4页码:275-292 |
关键词 | non-self-adjoint and indefinite Carey non-conforming clement non-quasi-uniform partition minimal regularity Schwarz method |
ISSN号 | 1069-8299 |
英文摘要 | In this paper, the existence, uniqueness and uniform convergence of the solution of the Carey nonconforming element with non-quasi-uniform partitions is proved for non-self-adjoint and indefinite second-order elliptic problems under a minimal regularity assumption. Furthermore, the optimal error estimate for the solution of Carey non-conforming element method is obtained only under an H-2 Smoothness hypothesis. Finally, a two-level Schwarz method which suits non-quasi-uniform partitions is proposed and optimal convergence for the pre-conditioned GMRES method is shown. Copyright (C) 2000 John Wiley & Sons, Ltd. |
语种 | 英语 |
WOS记录号 | WOS:000086811700005 |
出版者 | JOHN WILEY & SONS LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/15442] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Chen, JR |
作者单位 | 1.Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China 2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, JR. Uniform convergence and two-level Schwarz method for Carey non-conforming element method for non-self-adjoint and indefinite problems[J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING,2000,16(4):275-292. |
APA | Chen, JR.(2000).Uniform convergence and two-level Schwarz method for Carey non-conforming element method for non-self-adjoint and indefinite problems.COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING,16(4),275-292. |
MLA | Chen, JR."Uniform convergence and two-level Schwarz method for Carey non-conforming element method for non-self-adjoint and indefinite problems".COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING 16.4(2000):275-292. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。