中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A regularized smoothing Newton method for box constrained variational inequality problems with P-0-functions

文献类型:期刊论文

作者Qi, HD
刊名SIAM JOURNAL ON OPTIMIZATION
出版日期2000-02-23
卷号10期号:2页码:315-330
关键词smoothing Newton's method semismoothness global convergence superlinear convergence
ISSN号1052-6234
英文摘要Based on Qi, Sun, and Zhou's smoothing Newton method, we propose a regularized smoothing Newton method for the box constrained variational inequality problem with P-0-function (P-0 BVI). The proposed algorithm generates an infinite sequence such that the value of the merit function converges to zero. If P-0 BVI has a nonempty bounded solution set, the iteration sequence must be bounded. This result implies that there exists at least one accumulation point. Under CD-regularity, we prove that the proposed algorithm has a superlinear (quadratic) convergence rate without requiring strict complementarity conditions. The main feature of our global convergence results is that we do not assume a priori the existence of an accumulation point. This assumption is used widely in the literature due to the possible unboundedness of level sets of various adopted merit functions. Preliminary numerical results are also reported.
语种英语
WOS记录号WOS:000085671900001
出版者SIAM PUBLICATIONS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/15544]  
专题中国科学院数学与系统科学研究院
通讯作者Qi, HD
作者单位Chinese Acad Sci, Inst Computat Math & Sci Engn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Qi, HD. A regularized smoothing Newton method for box constrained variational inequality problems with P-0-functions[J]. SIAM JOURNAL ON OPTIMIZATION,2000,10(2):315-330.
APA Qi, HD.(2000).A regularized smoothing Newton method for box constrained variational inequality problems with P-0-functions.SIAM JOURNAL ON OPTIMIZATION,10(2),315-330.
MLA Qi, HD."A regularized smoothing Newton method for box constrained variational inequality problems with P-0-functions".SIAM JOURNAL ON OPTIMIZATION 10.2(2000):315-330.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。