中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Solving integral equations with logarithmic kernel by using periodic quasi-wavelet

文献类型:期刊论文

作者Chen, HL; Peng, SL
刊名JOURNAL OF COMPUTATIONAL MATHEMATICS
出版日期2000-09-01
卷号18期号:5页码:487-512
关键词periodic quasi-wavelet integral equation multiscale
ISSN号0254-9409
英文摘要In solving integral equations with logarithmic kernel which arises from the boundary integral equation reformulation of some boundary value problems for the two dimensional Helmholtz equation, we combine the Galerkin method with Beylkin's ([2]) approach, series of dense and nonsymmetric matrices may appear if we use traditional method. By appealing the so-called periodic quasi-wavelet (PQW in abbr.) ([5]), some of these matrices become diagonal, therefore we can find a algorithm with only O(K(m)(2)) arithmetic operations where m is the highest level. The Galerkin approximation has a polynomial rate of convergence.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000089333200005
出版者VSP BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/15640]  
专题中国科学院数学与系统科学研究院
作者单位Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Chen, HL,Peng, SL. Solving integral equations with logarithmic kernel by using periodic quasi-wavelet[J]. JOURNAL OF COMPUTATIONAL MATHEMATICS,2000,18(5):487-512.
APA Chen, HL,&Peng, SL.(2000).Solving integral equations with logarithmic kernel by using periodic quasi-wavelet.JOURNAL OF COMPUTATIONAL MATHEMATICS,18(5),487-512.
MLA Chen, HL,et al."Solving integral equations with logarithmic kernel by using periodic quasi-wavelet".JOURNAL OF COMPUTATIONAL MATHEMATICS 18.5(2000):487-512.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。