Optimal multi-criteria designs for Fourier regression models
文献类型:期刊论文
作者 | Shi, P; Fang, KT; Tsai, CL |
刊名 | JOURNAL OF STATISTICAL PLANNING AND INFERENCE
![]() |
出版日期 | 2001-07-01 |
卷号 | 96期号:2页码:387-401 |
关键词 | Fourier regression model lattice point optimal design |
ISSN号 | 0378-3758 |
英文摘要 | Riccomagno, Schwabe and Wynn (RSW) (1997) have given a necessary and sufficient condition for obtaining a complete Fourier regression model with a design based on lattice points that is D-optimal. However, in practice, the number of factors to be considered may be large, or the experimental data may be restricted or not homogeneous. To address these difficulties we extend the results of RSW to obtain a sufficient condition for an incomplete interaction Fourier model design based on lattice points that is D-, A-, E- and G-optimal. We also propose an algorithm for finding such optimal designs that requires fewer design points than those obtained using RSW's generators when the underlying model is a complete interaction model. (C) 2001 Elsevier Science B.V. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000168880100005 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/15955] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.Peking Univ, Peking, Peoples R China 2.Hong Kong Baptist Univ, Hong Kong, Hong Kong, Peoples R China 3.Chinese Acad Sci, Inst Appl Math, Beijing, Peoples R China 4.Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA |
推荐引用方式 GB/T 7714 | Shi, P,Fang, KT,Tsai, CL. Optimal multi-criteria designs for Fourier regression models[J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE,2001,96(2):387-401. |
APA | Shi, P,Fang, KT,&Tsai, CL.(2001).Optimal multi-criteria designs for Fourier regression models.JOURNAL OF STATISTICAL PLANNING AND INFERENCE,96(2),387-401. |
MLA | Shi, P,et al."Optimal multi-criteria designs for Fourier regression models".JOURNAL OF STATISTICAL PLANNING AND INFERENCE 96.2(2001):387-401. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。