The mortar element method for nonselfadjoint parabolic problem
文献类型:期刊论文
作者 | Chen, JR; Xu, XJ |
刊名 | APPLIED NUMERICAL MATHEMATICS
![]() |
出版日期 | 2001-05-01 |
卷号 | 37期号:3页码:341-358 |
关键词 | mortar element nonselfadjoint parabolic Schwarz method |
ISSN号 | 0168-9274 |
英文摘要 | In this paper, the mortar element method for nonselfadjoint parabolic problems is studied. The uniform convergence of the solution for the mortar element method is proved without regularity assumption. Meanwhile the error estimate is obtained under certain smoothness hypothesis. Furthermore, an additive Schwarz preconditioning method is proposed and the convergence rate for the preconditioned GMRES method is discussed without regularity assumption. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000167897500006 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/15997] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Chen, JR |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China 2.Nanjing Univ, Dept Math, Nanjing 210097, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, JR,Xu, XJ. The mortar element method for nonselfadjoint parabolic problem[J]. APPLIED NUMERICAL MATHEMATICS,2001,37(3):341-358. |
APA | Chen, JR,&Xu, XJ.(2001).The mortar element method for nonselfadjoint parabolic problem.APPLIED NUMERICAL MATHEMATICS,37(3),341-358. |
MLA | Chen, JR,et al."The mortar element method for nonselfadjoint parabolic problem".APPLIED NUMERICAL MATHEMATICS 37.3(2001):341-358. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。