中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Geometric meshes in collocation methods for Volterra integral equations with proportional delays

文献类型:期刊论文

作者Brunner, H; Hu, QUY; Lin, Q
刊名IMA JOURNAL OF NUMERICAL ANALYSIS
出版日期2001-10-01
卷号21期号:4页码:783-798
关键词delay integral equation geometric mesh collocation method iterated collocation solution superconvergence
ISSN号0272-4979
英文摘要In this paper we analyse the local superconvergence properties of iterated piecewise polynomial collocation solutions for linear second-kind Volterra integral equations with (vanishing) proportional delays qt (0 < q < 1). It is shown that on suitable geometric meshes depending on q, collocation at the Gauss points leads to almost optimal superconvergence at the mesh points. This contrasts with collocation on uniform meshes where the problem regarding the attainable order of local superconvergence remains open.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000171947000001
出版者OXFORD UNIV PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/16000]  
专题中国科学院数学与系统科学研究院
通讯作者Brunner, H
作者单位1.Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Brunner, H,Hu, QUY,Lin, Q. Geometric meshes in collocation methods for Volterra integral equations with proportional delays[J]. IMA JOURNAL OF NUMERICAL ANALYSIS,2001,21(4):783-798.
APA Brunner, H,Hu, QUY,&Lin, Q.(2001).Geometric meshes in collocation methods for Volterra integral equations with proportional delays.IMA JOURNAL OF NUMERICAL ANALYSIS,21(4),783-798.
MLA Brunner, H,et al."Geometric meshes in collocation methods for Volterra integral equations with proportional delays".IMA JOURNAL OF NUMERICAL ANALYSIS 21.4(2001):783-798.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。