Geometric meshes in collocation methods for Volterra integral equations with proportional delays
文献类型:期刊论文
作者 | Brunner, H; Hu, QUY; Lin, Q |
刊名 | IMA JOURNAL OF NUMERICAL ANALYSIS
![]() |
出版日期 | 2001-10-01 |
卷号 | 21期号:4页码:783-798 |
关键词 | delay integral equation geometric mesh collocation method iterated collocation solution superconvergence |
ISSN号 | 0272-4979 |
英文摘要 | In this paper we analyse the local superconvergence properties of iterated piecewise polynomial collocation solutions for linear second-kind Volterra integral equations with (vanishing) proportional delays qt (0 < q < 1). It is shown that on suitable geometric meshes depending on q, collocation at the Gauss points leads to almost optimal superconvergence at the mesh points. This contrasts with collocation on uniform meshes where the problem regarding the attainable order of local superconvergence remains open. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000171947000001 |
出版者 | OXFORD UNIV PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/16000] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Brunner, H |
作者单位 | 1.Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada 2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Brunner, H,Hu, QUY,Lin, Q. Geometric meshes in collocation methods for Volterra integral equations with proportional delays[J]. IMA JOURNAL OF NUMERICAL ANALYSIS,2001,21(4):783-798. |
APA | Brunner, H,Hu, QUY,&Lin, Q.(2001).Geometric meshes in collocation methods for Volterra integral equations with proportional delays.IMA JOURNAL OF NUMERICAL ANALYSIS,21(4),783-798. |
MLA | Brunner, H,et al."Geometric meshes in collocation methods for Volterra integral equations with proportional delays".IMA JOURNAL OF NUMERICAL ANALYSIS 21.4(2001):783-798. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。