Nonlinear stability of the relaxing schemes for scalar conservation laws
文献类型:期刊论文
作者 | Tang, HZ |
刊名 | APPLIED NUMERICAL MATHEMATICS
![]() |
出版日期 | 2001-08-01 |
卷号 | 38期号:3页码:347-359 |
关键词 | the relaxing schemes maximum principle TVD hyperbolic conservation laws |
ISSN号 | 0168-9274 |
英文摘要 | The purpose of this paper is to study nonlinear stability of the relaxing schemes approximating nonconvex scalar conservation laws, constructed by Jin and Xin [4]. We will establish the maximum principle for a first-order and a second-order relaxing schemes presented in [4], if the initial layer is not introduced. Optimal bounds on the total variation and L-1-boundedness for the above schemes will also be obtained. Specifically, the conserved physical quantity in the relaxing schemes is TVD. The Lipschitz constant of the L-1 continuity in time is shown to be independent of the relaxation parameter epsilon and the time size k. These imply convergence of the above relaxing schemes. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved. |
语种 | 英语 |
WOS记录号 | WOS:000170242800006 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/16003] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Tang, HZ |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Tang, HZ. Nonlinear stability of the relaxing schemes for scalar conservation laws[J]. APPLIED NUMERICAL MATHEMATICS,2001,38(3):347-359. |
APA | Tang, HZ.(2001).Nonlinear stability of the relaxing schemes for scalar conservation laws.APPLIED NUMERICAL MATHEMATICS,38(3),347-359. |
MLA | Tang, HZ."Nonlinear stability of the relaxing schemes for scalar conservation laws".APPLIED NUMERICAL MATHEMATICS 38.3(2001):347-359. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。