中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs

文献类型:期刊论文

作者Li, ZC; Yan, NN
刊名APPLIED NUMERICAL MATHEMATICS
出版日期2001-10-01
卷号39期号:1页码:61-85
关键词blending surfaces biharmonic equation bi-cubic Hermite element boundary penalty methods boundary hybrid techniques superconvergence stability
ISSN号0168-9274
英文摘要In this paper, consider biharmonic equations and 31) blending surfaces, and choose the bi-cubic Hermite elements to seek their approximate solutions. We pursue not only the global superconvergence originated in Lin and his colleagues (Lin, 1994; Lin and Luo, 1995; Lin and Yan, 1996), but also better numerical stability. The boundary penalty plus hybrid integrals are employed to satisfy the normal derivative boundary conditions. Compared with the penalty finite methods (BP-FEM) of bi-cubic Hermite elements in (Li, 1998, 1999; Li and Chang, 1999), the merit of the new methods in this paper is reduction of a's values thus to improve numerical stability. Suppose that the solution domain Omega can be split into small rectangles square (ij). The global superconvergence O(h(2.5)) and O(h(3.5)) in H-2 norms are achieved for quasiuniform and uniform square (ij), respectively. Both cases yield the optimal condition number O(h(-4)), compared with O(h(-6)) and O(h(-8)) in (Li, 1999; Li and Chang, 1999). This is an important improvement of stability for biharmonic solutions. However, for 31) blending surfaces, only the global superconvergence O(h3) is achieved for uniform square (ij). Morever, numerical experiments are provided for biharmonic equations to support the high superconvergence O(h(3.5)) involving the natural boundary condition for uniform square (ij) with parameter mu epsilon [0, 1] This paper manifests a great flexibility of global superconvegence in applications. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000171204800005
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/16237]  
专题中国科学院数学与系统科学研究院
通讯作者Li, ZC
作者单位1.Natl Sun Yat Sen Univ, Dept Math Appl, Kaohsiung 80242, Taiwan
2.Acad Sinica, Acad Math & Syst Sci, Inst Syst Sci, Beijing 10080, Peoples R China
推荐引用方式
GB/T 7714
Li, ZC,Yan, NN. Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs[J]. APPLIED NUMERICAL MATHEMATICS,2001,39(1):61-85.
APA Li, ZC,&Yan, NN.(2001).Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs.APPLIED NUMERICAL MATHEMATICS,39(1),61-85.
MLA Li, ZC,et al."Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs".APPLIED NUMERICAL MATHEMATICS 39.1(2001):61-85.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。