Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs
文献类型:期刊论文
| 作者 | Li, ZC; Yan, NN |
| 刊名 | APPLIED NUMERICAL MATHEMATICS
![]() |
| 出版日期 | 2001-10-01 |
| 卷号 | 39期号:1页码:61-85 |
| 关键词 | blending surfaces biharmonic equation bi-cubic Hermite element boundary penalty methods boundary hybrid techniques superconvergence stability |
| ISSN号 | 0168-9274 |
| 英文摘要 | In this paper, consider biharmonic equations and 31) blending surfaces, and choose the bi-cubic Hermite elements to seek their approximate solutions. We pursue not only the global superconvergence originated in Lin and his colleagues (Lin, 1994; Lin and Luo, 1995; Lin and Yan, 1996), but also better numerical stability. The boundary penalty plus hybrid integrals are employed to satisfy the normal derivative boundary conditions. Compared with the penalty finite methods (BP-FEM) of bi-cubic Hermite elements in (Li, 1998, 1999; Li and Chang, 1999), the merit of the new methods in this paper is reduction of a's values thus to improve numerical stability. Suppose that the solution domain Omega can be split into small rectangles square (ij). The global superconvergence O(h(2.5)) and O(h(3.5)) in H-2 norms are achieved for quasiuniform and uniform square (ij), respectively. Both cases yield the optimal condition number O(h(-4)), compared with O(h(-6)) and O(h(-8)) in (Li, 1999; Li and Chang, 1999). This is an important improvement of stability for biharmonic solutions. However, for 31) blending surfaces, only the global superconvergence O(h3) is achieved for uniform square (ij). Morever, numerical experiments are provided for biharmonic equations to support the high superconvergence O(h(3.5)) involving the natural boundary condition for uniform square (ij) with parameter mu epsilon [0, 1] This paper manifests a great flexibility of global superconvegence in applications. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved. |
| WOS研究方向 | Mathematics |
| 语种 | 英语 |
| WOS记录号 | WOS:000171204800005 |
| 出版者 | ELSEVIER SCIENCE BV |
| 源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/16237] ![]() |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Li, ZC |
| 作者单位 | 1.Natl Sun Yat Sen Univ, Dept Math Appl, Kaohsiung 80242, Taiwan 2.Acad Sinica, Acad Math & Syst Sci, Inst Syst Sci, Beijing 10080, Peoples R China |
| 推荐引用方式 GB/T 7714 | Li, ZC,Yan, NN. Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs[J]. APPLIED NUMERICAL MATHEMATICS,2001,39(1):61-85. |
| APA | Li, ZC,&Yan, NN.(2001).Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs.APPLIED NUMERICAL MATHEMATICS,39(1),61-85. |
| MLA | Li, ZC,et al."Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs".APPLIED NUMERICAL MATHEMATICS 39.1(2001):61-85. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

