中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An iterative method with variable relaxation parameters for saddle-point problems

文献类型:期刊论文

作者Hu, QY; Zou, J
刊名SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS
出版日期2001-11-19
卷号23期号:2页码:317-338
关键词saddle-point inexact Uzawa method indefinite systems preconditioning
ISSN号0895-4798
英文摘要In this paper, we propose an inexact Uzawa method with variable relaxation parameters for iteratively solving linear saddle-point problems. The method involves two variable relaxation parameters, which can be updated easily in each iteration, similar to the evaluation of the two iteration parameters in the conjugate gradient method. This new algorithm has an advantage over most existing Uzawa-type algorithms: it is always convergent without any a priori estimates on the spectrum of the preconditioned Schur complement matrix, which may not be easy to achieve in applications. The rate of the convergence of the inexact Uzawa method is analyzed. Numerical results of the algorithm applied for the Stokes problem and a purely linear system of algebraic equations are presented.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000172891000002
出版者SIAM PUBLICATIONS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/16406]  
专题中国科学院数学与系统科学研究院
通讯作者Hu, QY
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
2.Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Hu, QY,Zou, J. An iterative method with variable relaxation parameters for saddle-point problems[J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS,2001,23(2):317-338.
APA Hu, QY,&Zou, J.(2001).An iterative method with variable relaxation parameters for saddle-point problems.SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS,23(2),317-338.
MLA Hu, QY,et al."An iterative method with variable relaxation parameters for saddle-point problems".SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 23.2(2001):317-338.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。