中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes

文献类型:期刊论文

作者Du, L; Yan, NN
刊名ADVANCES IN COMPUTATIONAL MATHEMATICS
出版日期2001-02-01
卷号14期号:2页码:175-193
关键词adaptive finite element method a posteriori error estimate gradient recovery superconvergence
ISSN号1019-7168
英文摘要In this paper, we derive gradient recovery type a posteriori error estimate for the finite element approximation of elliptic equations. We show that a posteriori error estimate provide both upper and lower bounds for the discretization error on the non-uniform meshes. Moreover, it is proved that a posteriori error estimate is also asymptotically exact on the uniform meshes if the solution is smooth enough. The numerical results demonstrating the theoretical results are also presented in this paper.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000170079500004
出版者BALTZER SCI PUBL BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/16511]  
专题系统科学研究所
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Du, L,Yan, NN. Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes[J]. ADVANCES IN COMPUTATIONAL MATHEMATICS,2001,14(2):175-193.
APA Du, L,&Yan, NN.(2001).Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes.ADVANCES IN COMPUTATIONAL MATHEMATICS,14(2),175-193.
MLA Du, L,et al."Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes".ADVANCES IN COMPUTATIONAL MATHEMATICS 14.2(2001):175-193.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。