Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes
文献类型:期刊论文
| 作者 | Du, L; Yan, NN
|
| 刊名 | ADVANCES IN COMPUTATIONAL MATHEMATICS
![]() |
| 出版日期 | 2001-02-01 |
| 卷号 | 14期号:2页码:175-193 |
| 关键词 | adaptive finite element method a posteriori error estimate gradient recovery superconvergence |
| ISSN号 | 1019-7168 |
| 英文摘要 | In this paper, we derive gradient recovery type a posteriori error estimate for the finite element approximation of elliptic equations. We show that a posteriori error estimate provide both upper and lower bounds for the discretization error on the non-uniform meshes. Moreover, it is proved that a posteriori error estimate is also asymptotically exact on the uniform meshes if the solution is smooth enough. The numerical results demonstrating the theoretical results are also presented in this paper. |
| WOS研究方向 | Mathematics |
| 语种 | 英语 |
| WOS记录号 | WOS:000170079500004 |
| 出版者 | BALTZER SCI PUBL BV |
| 源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/16511] ![]() |
| 专题 | 系统科学研究所 |
| 作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing, Peoples R China |
| 推荐引用方式 GB/T 7714 | Du, L,Yan, NN. Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes[J]. ADVANCES IN COMPUTATIONAL MATHEMATICS,2001,14(2):175-193. |
| APA | Du, L,&Yan, NN.(2001).Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes.ADVANCES IN COMPUTATIONAL MATHEMATICS,14(2),175-193. |
| MLA | Du, L,et al."Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes".ADVANCES IN COMPUTATIONAL MATHEMATICS 14.2(2001):175-193. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


