中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A characterization of minimal Legendrian submanifolds in S2n+1

文献类型:期刊论文

作者Le, HV; Wang, GF
刊名COMPOSITIO MATHEMATICA
出版日期2001-10-01
卷号129期号:1页码:87-93
关键词minimal Legendrian submanifolds special Lagrangian cones
ISSN号0010-437X
英文摘要Let x: L-n --> S2n+1 subset of R2n+2 be a minimal submanifold in bb S2n+1. In this note, we show that L is Legendrian if and only if for any A is an element of su(n + 1) the restriction to L of < Ax, root -1x > satisfies Deltaf = 2(n + 1)f. In this case, 2(n + 1) is an eigenvalue of the Laplacian with multiplicity at least 1/2(n(n + 3)). Moreover if the multiplicity equals to 1/2(n(n + 3)), then L-n is totally geodesic.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000170964600004
出版者KLUWER ACADEMIC PUBL
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/16529]  
专题中国科学院数学与系统科学研究院
通讯作者Le, HV
作者单位1.Max Planck Inst Math Sci, D-04103 Leipzig, Germany
2.Acad Sinica, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Le, HV,Wang, GF. A characterization of minimal Legendrian submanifolds in S2n+1[J]. COMPOSITIO MATHEMATICA,2001,129(1):87-93.
APA Le, HV,&Wang, GF.(2001).A characterization of minimal Legendrian submanifolds in S2n+1.COMPOSITIO MATHEMATICA,129(1),87-93.
MLA Le, HV,et al."A characterization of minimal Legendrian submanifolds in S2n+1".COMPOSITIO MATHEMATICA 129.1(2001):87-93.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。