A characterization of minimal Legendrian submanifolds in S2n+1
文献类型:期刊论文
作者 | Le, HV; Wang, GF |
刊名 | COMPOSITIO MATHEMATICA
![]() |
出版日期 | 2001-10-01 |
卷号 | 129期号:1页码:87-93 |
关键词 | minimal Legendrian submanifolds special Lagrangian cones |
ISSN号 | 0010-437X |
英文摘要 | Let x: L-n --> S2n+1 subset of R2n+2 be a minimal submanifold in bb S2n+1. In this note, we show that L is Legendrian if and only if for any A is an element of su(n + 1) the restriction to L of < Ax, root -1x > satisfies Deltaf = 2(n + 1)f. In this case, 2(n + 1) is an eigenvalue of the Laplacian with multiplicity at least 1/2(n(n + 3)). Moreover if the multiplicity equals to 1/2(n(n + 3)), then L-n is totally geodesic. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000170964600004 |
出版者 | KLUWER ACADEMIC PUBL |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/16529] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Le, HV |
作者单位 | 1.Max Planck Inst Math Sci, D-04103 Leipzig, Germany 2.Acad Sinica, Inst Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Le, HV,Wang, GF. A characterization of minimal Legendrian submanifolds in S2n+1[J]. COMPOSITIO MATHEMATICA,2001,129(1):87-93. |
APA | Le, HV,&Wang, GF.(2001).A characterization of minimal Legendrian submanifolds in S2n+1.COMPOSITIO MATHEMATICA,129(1),87-93. |
MLA | Le, HV,et al."A characterization of minimal Legendrian submanifolds in S2n+1".COMPOSITIO MATHEMATICA 129.1(2001):87-93. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。