中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multigrid method and multilevel additive preconditioner for mixed element method for non-self-adjoint and indefinite problems

文献类型:期刊论文

作者Chen, JR
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2001-04-15
卷号119期号:2-3页码:229-247
关键词multigrid multilevel additive preconditioner mixed element indefinite problems
ISSN号0096-3003
英文摘要In this paper, a V-cycle multigrid method is proposed for mixed element method for non-self-adjoint and indefinite second-order elliptic problems and the uniform convergence of the V-cycle multigrid method is proven under minimal regularity assumption. Meanwhile, a multilevel additive preconditioner is given for these problems and an optimal convergence rate for preconditioned GMRES method is obtained under minimal regularity assumption. (C) 2001 Elsevier Science Inc. All rights reserved.
语种英语
WOS记录号WOS:000168075800010
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/16674]  
专题中国科学院数学与系统科学研究院
通讯作者Chen, JR
作者单位1.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
2.Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
推荐引用方式
GB/T 7714
Chen, JR. Multigrid method and multilevel additive preconditioner for mixed element method for non-self-adjoint and indefinite problems[J]. APPLIED MATHEMATICS AND COMPUTATION,2001,119(2-3):229-247.
APA Chen, JR.(2001).Multigrid method and multilevel additive preconditioner for mixed element method for non-self-adjoint and indefinite problems.APPLIED MATHEMATICS AND COMPUTATION,119(2-3),229-247.
MLA Chen, JR."Multigrid method and multilevel additive preconditioner for mixed element method for non-self-adjoint and indefinite problems".APPLIED MATHEMATICS AND COMPUTATION 119.2-3(2001):229-247.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。