Multigrid method and multilevel additive preconditioner for mixed element method for non-self-adjoint and indefinite problems
文献类型:期刊论文
作者 | Chen, JR |
刊名 | APPLIED MATHEMATICS AND COMPUTATION
![]() |
出版日期 | 2001-04-15 |
卷号 | 119期号:2-3页码:229-247 |
关键词 | multigrid multilevel additive preconditioner mixed element indefinite problems |
ISSN号 | 0096-3003 |
英文摘要 | In this paper, a V-cycle multigrid method is proposed for mixed element method for non-self-adjoint and indefinite second-order elliptic problems and the uniform convergence of the V-cycle multigrid method is proven under minimal regularity assumption. Meanwhile, a multilevel additive preconditioner is given for these problems and an optimal convergence rate for preconditioned GMRES method is obtained under minimal regularity assumption. (C) 2001 Elsevier Science Inc. All rights reserved. |
语种 | 英语 |
WOS记录号 | WOS:000168075800010 |
出版者 | ELSEVIER SCIENCE INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/16674] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Chen, JR |
作者单位 | 1.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China 2.Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, JR. Multigrid method and multilevel additive preconditioner for mixed element method for non-self-adjoint and indefinite problems[J]. APPLIED MATHEMATICS AND COMPUTATION,2001,119(2-3):229-247. |
APA | Chen, JR.(2001).Multigrid method and multilevel additive preconditioner for mixed element method for non-self-adjoint and indefinite problems.APPLIED MATHEMATICS AND COMPUTATION,119(2-3),229-247. |
MLA | Chen, JR."Multigrid method and multilevel additive preconditioner for mixed element method for non-self-adjoint and indefinite problems".APPLIED MATHEMATICS AND COMPUTATION 119.2-3(2001):229-247. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。