Stability analysis of numerical methods for systems of functional-differential and functional equations
文献类型:期刊论文
作者 | Huang, CM; Chang, QS |
刊名 | COMPUTERS & MATHEMATICS WITH APPLICATIONS
![]() |
出版日期 | 2002-09-01 |
卷号 | 44期号:5-6页码:717-729 |
关键词 | hybrid systems functional-differential equations functional equations linear multistep methods one-leg methods Runge-Kutta methods numerical stability |
ISSN号 | 0898-1221 |
英文摘要 | This paper is concerned with the numerical solution of functional-differential and functional equations which include functional-differential equations of neutral type as special cases. The adaptation of linear multistep methods, one-leg methods, and Runge-Kutta methods is considered. The emphasis is on the linear stability of numerical methods. It is proved that A-stable methods can inherit the asymptotic stability of underlying linear systems. Some general results of stability on explicit and implicit methods are also given. (C) 2002 Elsevier Science Ltd. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000177691200015 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/17001] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, CM |
作者单位 | 1.Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China 2.Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, CM,Chang, QS. Stability analysis of numerical methods for systems of functional-differential and functional equations[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS,2002,44(5-6):717-729. |
APA | Huang, CM,&Chang, QS.(2002).Stability analysis of numerical methods for systems of functional-differential and functional equations.COMPUTERS & MATHEMATICS WITH APPLICATIONS,44(5-6),717-729. |
MLA | Huang, CM,et al."Stability analysis of numerical methods for systems of functional-differential and functional equations".COMPUTERS & MATHEMATICS WITH APPLICATIONS 44.5-6(2002):717-729. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。