Maximum Shannon entropy, minimum Fisher information, and an elementary game
文献类型:期刊论文
作者 | Luo, SL![]() |
刊名 | FOUNDATIONS OF PHYSICS
![]() |
出版日期 | 2002-11-01 |
卷号 | 32期号:11页码:1757-1772 |
关键词 | Shannon entropy Fisher information game against nature binary probability Malus' law |
ISSN号 | 0015-9018 |
英文摘要 | We formulate an elementary statistical game which captures the essence of some fundamental quantum experiments such as photon polarization and spin measurement. We explore and compare the significance of the principle of maximum Shannon entropy and the principle of minimum Fisher information in solving such a game. The solution based on the principle of minimum Fisher information coincides with the solution based on an invariance principle, and provides an informational explanation of Malus law for photon polarization. There is no solution based on the principle of maximum Shannon entropy. The result demonstrates the merits of Fisher information, and the demerits of Shannon entropy, in treating some fundamental quantum problems. It also provides a quantitative example in support of a general philosophy: Nature intends to hide Fisher information, while obeying some simple rules. |
语种 | 英语 |
WOS记录号 | WOS:000179770600006 |
出版者 | KLUWER ACADEMIC/PLENUM PUBL |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/17019] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Luo, SL |
作者单位 | 1.Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China 2.City Univ Hong Kong, Liu Bie Ju Ctr Math Sci, Kowloon, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | Luo, SL. Maximum Shannon entropy, minimum Fisher information, and an elementary game[J]. FOUNDATIONS OF PHYSICS,2002,32(11):1757-1772. |
APA | Luo, SL.(2002).Maximum Shannon entropy, minimum Fisher information, and an elementary game.FOUNDATIONS OF PHYSICS,32(11),1757-1772. |
MLA | Luo, SL."Maximum Shannon entropy, minimum Fisher information, and an elementary game".FOUNDATIONS OF PHYSICS 32.11(2002):1757-1772. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。