A domain decomposition method based on natural boundary reduction for nonlinear time-dependent exterior wave problems
文献类型:期刊论文
作者 | Du, Q; Yu, D |
刊名 | COMPUTING
![]() |
出版日期 | 2002 |
卷号 | 68期号:2页码:111-129 |
关键词 | nonlinear wave equations natural boundary reduction (NBR) domain decomposition method (DDM) exterior problems |
ISSN号 | 0010-485X |
DOI | 10.1007/s00607-001-1432-y |
英文摘要 | A new domain decomposition method based on natural boundary reduction is devised for the solution of nonlinear time-dependent exterior wave problems. The two-dimensional nonlinear scalar wave equation is taken as a model to illustrate the method. The governing equation is first discretized in time, leading to a time-stepping scheme, where a nonlinear exterior elliptic problem has to be solved at each time step. Two artificial boundaries are introduced. The Schwarz alternating method is proposed. The convergence of this algorithm is given. The contraction factor for exterior circular domain is also discussed. Numerical results are presented for the nonlinear wave equation to demonstrate the performance of the method. |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000174844400002 |
出版者 | SPRINGER-VERLAG WIEN |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/17085] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Du, Q |
作者单位 | 1.Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Du, Q,Yu, D. A domain decomposition method based on natural boundary reduction for nonlinear time-dependent exterior wave problems[J]. COMPUTING,2002,68(2):111-129. |
APA | Du, Q,&Yu, D.(2002).A domain decomposition method based on natural boundary reduction for nonlinear time-dependent exterior wave problems.COMPUTING,68(2),111-129. |
MLA | Du, Q,et al."A domain decomposition method based on natural boundary reduction for nonlinear time-dependent exterior wave problems".COMPUTING 68.2(2002):111-129. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。