Infinitely many solutions for Hamiltonian systems
文献类型:期刊论文
作者 | Zou, WM; Li, SJ |
刊名 | JOURNAL OF DIFFERENTIAL EQUATIONS
![]() |
出版日期 | 2002-11-20 |
卷号 | 186期号:1页码:141-164 |
关键词 | Hamiltonian system resonance sign-changing potential Betti number Morse theory |
ISSN号 | 0022-0396 |
英文摘要 | We consider two classes of the second-order Hamiltonian systems with symmetry. If the systems are asymptotically linear with resonance, we obtain infinitely many small-energy solutions by minimax technique. If the systems possess sign-changing potential, we also establish an existence theorem of infinitely many solutions by Morse theory. (C) 2002 Elsevier Science (USA). All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000179818500007 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/17363] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zou, WM |
作者单位 | 1.Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China 2.Acad Sinica, Inst Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Zou, WM,Li, SJ. Infinitely many solutions for Hamiltonian systems[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2002,186(1):141-164. |
APA | Zou, WM,&Li, SJ.(2002).Infinitely many solutions for Hamiltonian systems.JOURNAL OF DIFFERENTIAL EQUATIONS,186(1),141-164. |
MLA | Zou, WM,et al."Infinitely many solutions for Hamiltonian systems".JOURNAL OF DIFFERENTIAL EQUATIONS 186.1(2002):141-164. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。