中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Infinitely many solutions for Hamiltonian systems

文献类型:期刊论文

作者Zou, WM; Li, SJ
刊名JOURNAL OF DIFFERENTIAL EQUATIONS
出版日期2002-11-20
卷号186期号:1页码:141-164
关键词Hamiltonian system resonance sign-changing potential Betti number Morse theory
ISSN号0022-0396
英文摘要We consider two classes of the second-order Hamiltonian systems with symmetry. If the systems are asymptotically linear with resonance, we obtain infinitely many small-energy solutions by minimax technique. If the systems possess sign-changing potential, we also establish an existence theorem of infinitely many solutions by Morse theory. (C) 2002 Elsevier Science (USA). All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000179818500007
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/17363]  
专题中国科学院数学与系统科学研究院
通讯作者Zou, WM
作者单位1.Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
2.Acad Sinica, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zou, WM,Li, SJ. Infinitely many solutions for Hamiltonian systems[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2002,186(1):141-164.
APA Zou, WM,&Li, SJ.(2002).Infinitely many solutions for Hamiltonian systems.JOURNAL OF DIFFERENTIAL EQUATIONS,186(1),141-164.
MLA Zou, WM,et al."Infinitely many solutions for Hamiltonian systems".JOURNAL OF DIFFERENTIAL EQUATIONS 186.1(2002):141-164.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。