Geometry of 2 x 2 hermitian matrices
文献类型:期刊论文
作者 | Huang, LP; Wan, ZX |
刊名 | SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
![]() |
出版日期 | 2002-08-01 |
卷号 | 45期号:8页码:1025-1037 |
关键词 | division ring involution generalized quaternion hermitian matrix adjacency |
ISSN号 | 1006-9283 |
英文摘要 | Let D be a division ring which possesses an involution a --> (a) over bar. Assume that F = {a is an element of D\a = (a) over bar} is a proper subfield of D and is contained in the center of D. It is pointed out that if D is of characteristic not two, D is either a separable quadratic extension of F or a division ring of generalized quaternions over F and that if D is of characteristic two, D is a separable quadratic extension of F. Thus the trace map Tr: D --> F, a --> a + (a) over bar is always surjective, which is formerly posed as an assumption in the fundamental theorem of n x n hermitian matrices over D when n greater than or equal to 3 and now can be deleted. When D is a field, the fundamental theorem of 2 x 2 hermitian matrices over D has already been proved. This paper proves the fundamental theorem of 2 x 2 hermitian matrices over any division ring of generalized quaternions of characteristic not two. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000177545600009 |
出版者 | SCIENCE CHINA PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/17507] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, LP |
作者单位 | 1.Xiangtan Polytech Univ, Inst Math, Xiangtan 411201, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China 3.Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, LP,Wan, ZX. Geometry of 2 x 2 hermitian matrices[J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY,2002,45(8):1025-1037. |
APA | Huang, LP,&Wan, ZX.(2002).Geometry of 2 x 2 hermitian matrices.SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY,45(8),1025-1037. |
MLA | Huang, LP,et al."Geometry of 2 x 2 hermitian matrices".SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY 45.8(2002):1025-1037. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。