中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Uniform convergence and Schwarz method for the mortar element method for non-selfadjoint and indefinite problems

文献类型:期刊论文

作者Chen, JR; Xu, XJ
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2002-04-15
卷号136期号:2-3页码:517-533
关键词mortar element indefinite uniform convergence Schwarz method
ISSN号0096-3003
英文摘要In this paper, the mortar element method for non-selfadjoint and indefinite second order elliptic problems is studied. Only under minimal regularity assumption, the existence, uniqueness and uniform convergence of the solution for the mortar element method are proven. Furthermore, an additive Schwarz preconditioning method is proposed and nearly optimal convergence rate for the preconditioned GMRES method is shown under minimal regularity assumption. (C) 2002 Elsevier Science Inc. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000179307000027
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/17621]  
专题中国科学院数学与系统科学研究院
通讯作者Chen, JR
作者单位1.Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China
2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Chen, JR,Xu, XJ. Uniform convergence and Schwarz method for the mortar element method for non-selfadjoint and indefinite problems[J]. APPLIED MATHEMATICS AND COMPUTATION,2002,136(2-3):517-533.
APA Chen, JR,&Xu, XJ.(2002).Uniform convergence and Schwarz method for the mortar element method for non-selfadjoint and indefinite problems.APPLIED MATHEMATICS AND COMPUTATION,136(2-3),517-533.
MLA Chen, JR,et al."Uniform convergence and Schwarz method for the mortar element method for non-selfadjoint and indefinite problems".APPLIED MATHEMATICS AND COMPUTATION 136.2-3(2002):517-533.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。