Uniform convergence and Schwarz method for the mortar element method for non-selfadjoint and indefinite problems
文献类型:期刊论文
作者 | Chen, JR; Xu, XJ |
刊名 | APPLIED MATHEMATICS AND COMPUTATION
![]() |
出版日期 | 2002-04-15 |
卷号 | 136期号:2-3页码:517-533 |
关键词 | mortar element indefinite uniform convergence Schwarz method |
ISSN号 | 0096-3003 |
英文摘要 | In this paper, the mortar element method for non-selfadjoint and indefinite second order elliptic problems is studied. Only under minimal regularity assumption, the existence, uniqueness and uniform convergence of the solution for the mortar element method are proven. Furthermore, an additive Schwarz preconditioning method is proposed and nearly optimal convergence rate for the preconditioned GMRES method is shown under minimal regularity assumption. (C) 2002 Elsevier Science Inc. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000179307000027 |
出版者 | ELSEVIER SCIENCE INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/17621] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Chen, JR |
作者单位 | 1.Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China 2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, JR,Xu, XJ. Uniform convergence and Schwarz method for the mortar element method for non-selfadjoint and indefinite problems[J]. APPLIED MATHEMATICS AND COMPUTATION,2002,136(2-3):517-533. |
APA | Chen, JR,&Xu, XJ.(2002).Uniform convergence and Schwarz method for the mortar element method for non-selfadjoint and indefinite problems.APPLIED MATHEMATICS AND COMPUTATION,136(2-3),517-533. |
MLA | Chen, JR,et al."Uniform convergence and Schwarz method for the mortar element method for non-selfadjoint and indefinite problems".APPLIED MATHEMATICS AND COMPUTATION 136.2-3(2002):517-533. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。