中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deterministic convergence of an online gradient method for neural networks

文献类型:期刊论文

作者Wu, W; Xu, YS
刊名JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
出版日期2002-07-01
卷号144期号:1-2页码:335-347
关键词online stochastic gradient method nonlinear feedforward neural networks deterministic convergence monotonicity constant learning rate
ISSN号0377-0427
英文摘要The online gradient method has been widely used as a learning algorithm for neural networks. We establish a deterministic convergence of online gradient methods for the training of a class of nonlinear feedforward neural networks when the training examples are linearly independent. We choose the learning rate eta to be a constant during the training procedure. The monotonicity of the error function in the iteration is proved. A criterion for choosing the learning rate eta is also provided to guarantee the convergence. Under certain conditions similar to those for the classical gradient methods, an optimal convergence rate for our online gradient methods is proved. (C) 2001 Elsevier Science B.V. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000176295300025
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/17735]  
专题中国科学院数学与系统科学研究院
通讯作者Wu, W
作者单位1.Dalian Univ Technol, Dept Math, Dalian 116023, Peoples R China
2.N Dakota State Univ, Dept Math, Fargo, ND 58105 USA
3.Acad Sinica, Math Inst, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Wu, W,Xu, YS. Deterministic convergence of an online gradient method for neural networks[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2002,144(1-2):335-347.
APA Wu, W,&Xu, YS.(2002).Deterministic convergence of an online gradient method for neural networks.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,144(1-2),335-347.
MLA Wu, W,et al."Deterministic convergence of an online gradient method for neural networks".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 144.1-2(2002):335-347.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。