中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The Euler-Lagrange cohomology and general volume-preserving systems

文献类型:期刊论文

作者Zhou, B; Guo, HY; Pan, HZ; Wu, K
刊名MODERN PHYSICS LETTERS A
出版日期2003-09-07
卷号18期号:27页码:1911-1923
关键词Euler-Lagrange cohomology symplectic volume-preserving
ISSN号0217-7323
英文摘要We briefly introduce the concept of Euler-Lagrange cohomology groups on a symplectic manifold (M-2n,omega) and systematically present the general form of volume-preserving equations on the manifold from the cohomological point of view. It is shown that for every volume-preserving flow generated by these equations there is an important two-form that plays the analog role with the Hamiltonian in the Hamilton mechanics. In addition, the ordinary canonical equations with Hamiltonian H are included as a special case with the two-form 1/n-1 1 1 Homega. The other volume preserving systems on (M-2n ,omega) are studied. The relations between our approach and Feng-Shang's volume-preserving systems as well as the Nambu mechanics are also explored.
WOS研究方向Physics
语种英语
WOS记录号WOS:000185126000006
出版者WORLD SCIENTIFIC PUBL CO PTE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/18274]  
专题中国科学院数学与系统科学研究院
通讯作者Zhou, B
作者单位1.Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China
2.Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
4.Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
推荐引用方式
GB/T 7714
Zhou, B,Guo, HY,Pan, HZ,et al. The Euler-Lagrange cohomology and general volume-preserving systems[J]. MODERN PHYSICS LETTERS A,2003,18(27):1911-1923.
APA Zhou, B,Guo, HY,Pan, HZ,&Wu, K.(2003).The Euler-Lagrange cohomology and general volume-preserving systems.MODERN PHYSICS LETTERS A,18(27),1911-1923.
MLA Zhou, B,et al."The Euler-Lagrange cohomology and general volume-preserving systems".MODERN PHYSICS LETTERS A 18.27(2003):1911-1923.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。