中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Novel supervisor-searcher cooperation algorithms for minimization problems with strong noise

文献类型:期刊论文

作者Dai, YH; Lamb, J; Liu, WB
刊名OPTIMIZATION METHODS & SOFTWARE
出版日期2003-06-01
卷号18期号:3页码:247-264
关键词supervisor searcher cooperation global convergence stochastic optimization stochastic approximation
ISSN号1055-6788
DOI10.1080/1055678031000119364
英文摘要This work continues the investigation in Ref. [1]: designing minimization algorithms in the framework of supervisor and searcher cooperation (SSC). It explores a wider range of possible supervisors and search engines to be used in the construction of SSC algorithms. Global convergence is established for algorithms with general supervisors and search engines in the absence of noise, and the convergence rate is studied. Both theoretical analysis and numerical results illustrate the appealing attributes of the proposed algorithms.
WOS研究方向Computer Science ; Operations Research & Management Science ; Mathematics
语种英语
WOS记录号WOS:000184134600001
出版者TAYLOR & FRANCIS LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/18364]  
专题中国科学院数学与系统科学研究院
通讯作者Dai, YH
作者单位1.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
2.Univ Kent, CBS, Canterbury CT2 7PE, Kent, England
推荐引用方式
GB/T 7714
Dai, YH,Lamb, J,Liu, WB. Novel supervisor-searcher cooperation algorithms for minimization problems with strong noise[J]. OPTIMIZATION METHODS & SOFTWARE,2003,18(3):247-264.
APA Dai, YH,Lamb, J,&Liu, WB.(2003).Novel supervisor-searcher cooperation algorithms for minimization problems with strong noise.OPTIMIZATION METHODS & SOFTWARE,18(3),247-264.
MLA Dai, YH,et al."Novel supervisor-searcher cooperation algorithms for minimization problems with strong noise".OPTIMIZATION METHODS & SOFTWARE 18.3(2003):247-264.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。