中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deconvolution kernel estimator for mean transformation with ordinary smooth error

文献类型:期刊论文

作者Qin, HZ; Feng, SY
刊名STATISTICS & PROBABILITY LETTERS
出版日期2003-02-15
卷号61期号:4页码:337-346
关键词measurement error bandwidth selection super population rates of convergence
ISSN号0167-7152
英文摘要Consider the convolution model Y = X + epsilon in which e is the ordinary smooth measurement error with a known distribution. The estimator of mean transformation theta = E[G(X)] is constructed by deconvolution kernel technique. Moment and weak convergence rates of the proposed estimator are derived under some mild regularity conditions. Simulation results indicate that the underlying estimator is highly accurate and robust. (C) 2002 Elsevier Science B.V. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000181313500001
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/18577]  
专题中国科学院数学与系统科学研究院
作者单位1.Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Qin, HZ,Feng, SY. Deconvolution kernel estimator for mean transformation with ordinary smooth error[J]. STATISTICS & PROBABILITY LETTERS,2003,61(4):337-346.
APA Qin, HZ,&Feng, SY.(2003).Deconvolution kernel estimator for mean transformation with ordinary smooth error.STATISTICS & PROBABILITY LETTERS,61(4),337-346.
MLA Qin, HZ,et al."Deconvolution kernel estimator for mean transformation with ordinary smooth error".STATISTICS & PROBABILITY LETTERS 61.4(2003):337-346.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。