中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Nurbs approximation of A-splines and A-patches

文献类型:期刊论文

作者Bajaj, CL; Xu, GL; Holt, RJ; Netravali, AN
刊名INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS
出版日期2003-10-01
卷号13期号:5页码:359-390
关键词NURBS surface rendering algebraic patches
ISSN号0218-1959
英文摘要Given A-spline curves and A-patch surfaces that are implicitly defined on triangles and tetrahedra, we determine their NURBS representations. We provide a trimmed NURBS form for A-spline curves and a parametric tensor-product NURBS form for A-patch surfaces. We concentrate on cubic A-patches, providing a C-1-continuous surface that interpolates a given triangulation together with surface normals at the vertices. In many cases we can generate cubic trimming curves that are rationally parametrizable on the triangular faces of the tetrahedra; for the remaining faces we resort to using quadratic curves, which are always rationally parametrizable, to approximate the cubic trimming curves.
WOS研究方向Computer Science ; Mathematics
语种英语
WOS记录号WOS:000186556400001
出版者WORLD SCIENTIFIC PUBL CO PTE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/18896]  
专题中国科学院数学与系统科学研究院
通讯作者Bajaj, CL
作者单位1.Univ Texas, Dept Comp Sci, Austin, TX 78712 USA
2.Univ Texas, Inst Computat & Engn Sci, Austin, TX 78712 USA
3.Chinese Acad Sci, Inst Computat Math, Beijing 100864, Peoples R China
4.Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA
推荐引用方式
GB/T 7714
Bajaj, CL,Xu, GL,Holt, RJ,et al. Nurbs approximation of A-splines and A-patches[J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS,2003,13(5):359-390.
APA Bajaj, CL,Xu, GL,Holt, RJ,&Netravali, AN.(2003).Nurbs approximation of A-splines and A-patches.INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS,13(5),359-390.
MLA Bajaj, CL,et al."Nurbs approximation of A-splines and A-patches".INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS 13.5(2003):359-390.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。