Moving mesh methods with locally varying time steps
文献类型:期刊论文
作者 | Tan, ZJ; Zhang, ZR; Huang, YQ; Tang, T |
刊名 | JOURNAL OF COMPUTATIONAL PHYSICS
![]() |
出版日期 | 2004-10-10 |
卷号 | 200期号:1页码:347-367 |
关键词 | moving mesh method local time stepping finite volume method hyperbolic conservation laws |
ISSN号 | 0021-9991 |
DOI | 10.1016/j.jcp.2004.04.007 |
英文摘要 | The time steps associated with moving mesh methods are proportional to the smallest mesh size in space and as a result they are very small at each time level. For some practical problems, the physical phenomena develop dynamically singular or nearly singular solutions in fairly localized regions, and therefore the smallest time step at each time level occurs only in these localized regions. In this work, we will develop a local time stepping algorithm for the moving mesh methods. The principal idea will be demonstrated by investigating the nonlinear hyperbolic conservation laws. Numerical experiments are carried out to demonstrate the efficiency and robustness of the proposed methods. (C) 2004 Elsevier Inc. All rights reserved. |
WOS研究方向 | Computer Science ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000224284500017 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/19396] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Tang, T |
作者单位 | 1.Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China 2.Xiangtan Univ, Dept Math, Xiangtan 411105, Peoples R China 3.Xiangtan Univ, Inst Computat & Appl Math, Xiangtan 411105, Peoples R China 4.Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Tan, ZJ,Zhang, ZR,Huang, YQ,et al. Moving mesh methods with locally varying time steps[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2004,200(1):347-367. |
APA | Tan, ZJ,Zhang, ZR,Huang, YQ,&Tang, T.(2004).Moving mesh methods with locally varying time steps.JOURNAL OF COMPUTATIONAL PHYSICS,200(1),347-367. |
MLA | Tan, ZJ,et al."Moving mesh methods with locally varying time steps".JOURNAL OF COMPUTATIONAL PHYSICS 200.1(2004):347-367. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。