On the Laplacian spectral radius of a graph
文献类型:期刊论文
作者 | Liu, HQ; Lu, M; Tian, F |
刊名 | LINEAR ALGEBRA AND ITS APPLICATIONS
![]() |
出版日期 | 2004 |
卷号 | 376页码:135-141 |
关键词 | Laplacian spectral radius minimum degree maximum degree |
ISSN号 | 0024-3795 |
DOI | 10.1016/j.laa.2003.06.007 |
英文摘要 | Let G be a simple graph with n vertices and m edges and G(c) be its complement. Let delta(G) = delta and Delta(G) = Delta be the minimum degree and the maximum degree of vertices of G, respectively. In this paper, we present a sharp upper bound for the Laplacian spectral radius as follows: lambda(1)(G) less than or equal to (Delta + delta - 1) + root(Delta + delta - 1)(2) + 4(4m - 2delta(n-1))/2. Equality holds if and only if G is a connected regular bipartite graph. Another result Of the paper is an upper bound for the Laplacian spectral radius of the Nordhaus-Gaddum type. We prove that; lambda(1)(G) + lambda(1)(G(c)) less than or equal to n - 2 + root(Delta + delta + 1 - n)(2) + n(2) + 4(Delta - delta)(n - 1). (C) 2003 Elsevier Inc. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000186560300009 |
出版者 | ELSEVIER SCIENCE INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/19738] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Liu, HQ |
作者单位 | 1.Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, HQ,Lu, M,Tian, F. On the Laplacian spectral radius of a graph[J]. LINEAR ALGEBRA AND ITS APPLICATIONS,2004,376:135-141. |
APA | Liu, HQ,Lu, M,&Tian, F.(2004).On the Laplacian spectral radius of a graph.LINEAR ALGEBRA AND ITS APPLICATIONS,376,135-141. |
MLA | Liu, HQ,et al."On the Laplacian spectral radius of a graph".LINEAR ALGEBRA AND ITS APPLICATIONS 376(2004):135-141. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。