中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The well-posedness issue for an inviscid zero-Mach number system in general Besov spaces

文献类型:期刊论文

作者Fanelli, Francesco1; Liao, Xian2
刊名ASYMPTOTIC ANALYSIS
出版日期2015
卷号93期号:1-2页码:115-140
关键词zero-Mach number system well-posedness Besov spaces Chemin-Lerner spaces continuation criterion lifespan
ISSN号0921-7134
DOI10.3233/ASY-151290
英文摘要The present paper is devoted to the study of a zero-Mach number system with heat conduction but no viscosity. We work in the framework of general non-homogeneous Besov spaces B-p,r(s) (R-d), with p is an element of [2, 4] and for any d >= 2, which can be embedded into the class of globally Lipschitz functions. We prove a local in time well-posedness result in these classes and we are also able to show a continuation criterion and a lower bound for the lifespan of the solutions. The proof of the results relies on Littlewood-Paley decomposition and paradifferential calculus, and on refined commutator estimates in Chemin-Lerner spaces.
资助项目MICINN, Spain[MTM2011-29306-C02-00] ; Basque Government[PI2010-04] ; project "Instabilities in Hydrodynamics" ; Paris city hall (program "Emergences") ; Fondation Sciences Mathematiques de Paris ; Ministry of Education, Youth and Sports of the Czech Republic ; ERC[FP7-246775 NUMERIWAVES] ; ESF Research Networking Programme OPTPDE ; [ERC-CZ LL1202 MORE]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000356501200006
出版者IOS PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/20030]  
专题中国科学院数学与系统科学研究院
通讯作者Liao, Xian
作者单位1.Univ Paris Diderot, UMR 7586, Inst Math Jussieu Paris Rive Gauche, Paris, France
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Fanelli, Francesco,Liao, Xian. The well-posedness issue for an inviscid zero-Mach number system in general Besov spaces[J]. ASYMPTOTIC ANALYSIS,2015,93(1-2):115-140.
APA Fanelli, Francesco,&Liao, Xian.(2015).The well-posedness issue for an inviscid zero-Mach number system in general Besov spaces.ASYMPTOTIC ANALYSIS,93(1-2),115-140.
MLA Fanelli, Francesco,et al."The well-posedness issue for an inviscid zero-Mach number system in general Besov spaces".ASYMPTOTIC ANALYSIS 93.1-2(2015):115-140.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。