中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Inverse source problems for time-fractional mixed parabolic-hyperbolic-type equations

文献类型:期刊论文

作者Feng, Pengbin1; Karimov, Erkinjon T.2
刊名JOURNAL OF INVERSE AND ILL-POSED PROBLEMS
出版日期2015-08-01
卷号23期号:4页码:339-353
关键词Inverse source problem Caputo fractional derivative mixed-type equation orthonormal system of eigenfunctions
ISSN号0928-0219
DOI10.1515/jiip-2014-0022
英文摘要In the present paper we consider an inverse source problem for a time-fractional mixed parabolic-hyperbolic equation with Caputo derivatives. In the case when the hyperbolic part of the considered mixed-type equation is the wave equation, the uniqueness of the source and the solution are strongly influenced by the initial time and the problem is generally ill-posed. However, when the hyperbolic part is time-fractional, the problem is well-posed if the end time is large. Our method relies on the orthonormal system of eigenfunctions of the operator with respect to the space variables. Finally, we prove uniqueness and stability of certain weak solutions for the problems under consideration.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000358986200004
出版者WALTER DE GRUYTER GMBH
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/20503]  
专题中国科学院数学与系统科学研究院
通讯作者Feng, Pengbin
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Natl Univ Uzbekistan, Inst Math, Tashkent 100125, Uzbekistan
推荐引用方式
GB/T 7714
Feng, Pengbin,Karimov, Erkinjon T.. Inverse source problems for time-fractional mixed parabolic-hyperbolic-type equations[J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS,2015,23(4):339-353.
APA Feng, Pengbin,&Karimov, Erkinjon T..(2015).Inverse source problems for time-fractional mixed parabolic-hyperbolic-type equations.JOURNAL OF INVERSE AND ILL-POSED PROBLEMS,23(4),339-353.
MLA Feng, Pengbin,et al."Inverse source problems for time-fractional mixed parabolic-hyperbolic-type equations".JOURNAL OF INVERSE AND ILL-POSED PROBLEMS 23.4(2015):339-353.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。