中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Semiparametric maximum likelihood estimation for a two-sample density ratio model with right-censored data

文献类型:期刊论文

作者Wei, Wenhua1,2; Zhou, Yong1,3
刊名CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
出版日期2016-03-01
卷号44期号:1页码:58-81
关键词Density ratio model EM algorithm Empirical process right-censored data semiparametric maximum likelihood estimation
ISSN号0319-5724
DOI10.1002/cjs.11272
英文摘要In this paper we investigate a broader semiparametric two-sample density ratio model based on two groups of right-censored data. A semiparametric maximum likelihood estimator for the unknown finite and infinite dimensional parameters of the model is proposed and obtained by an EM algorithm. By using empirical process theory, we establish the uniform consistency and asymptotic normality of the proposed estimator. We moreover employ a Kolmogorov-Smirnov type test statistic to evaluate the model validity and a likelihood ratio test statistic to examine the treatment effects between the two groups. Simulation studies are conducted to assess the finite sample performance of the proposed estimator and to compare it with its alternatives. Finally a real data example is analyzed to illustrate its application. The Canadian Journal of Statistics 44: 58-81; 2016 (c) 2015 Statistical Society of Canada Resume Les auteurs explorent un modele semi-parametrique plus general pour le ratio des densites de deux echantillons base sur deux groupes de donnees censurees a droite. Ils proposent un estimateur semi-parametrique au maximum de vraisemblance pour les parametres de dimensions finies et infinies du modele et utilisent l'algorithme EM pour le calculer. l'aide de la theorie des processus empiriques, les auteurs etablissent la convergence uniforme et la normalite asymptotique de l'estimateur propose. De plus, ils emploient une statistique de type Kolmogorov-Smirnov pour evaluer la validite du modele et un test au rapport de vraisemblance pour examiner l'effet du traitement entre les deux groupes. Les auteurs procedent a des simulations afin d'evaluer la performance de l'estimateur propose sur des echantillons de taille finie, et de le comparer aux autres approches connues. Finalement, ils illustrent la mise en OEuvre de leur methode a l'aide de donnees reelles. La revue canadienne de statistique 44: 58-81; 2016 (c) 2015 Societe statistique du Canada
资助项目National Natural Science Foundation of China ; State Key Program of National Natural Science Foundation of China ; Key Laboratory of RCSDS, AMSS, CAS ; Shanghai First-class Discipline A and IRTSHUFE, PCSIRT
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000371485700004
出版者WILEY-BLACKWELL
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/22260]  
专题应用数学研究所
通讯作者Wei, Wenhua
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
2.City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R China
3.Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Wei, Wenhua,Zhou, Yong. Semiparametric maximum likelihood estimation for a two-sample density ratio model with right-censored data[J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,2016,44(1):58-81.
APA Wei, Wenhua,&Zhou, Yong.(2016).Semiparametric maximum likelihood estimation for a two-sample density ratio model with right-censored data.CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,44(1),58-81.
MLA Wei, Wenhua,et al."Semiparametric maximum likelihood estimation for a two-sample density ratio model with right-censored data".CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE 44.1(2016):58-81.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。