中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Big social network influence maximization via recursively estimating influence spread

文献类型:期刊论文

作者Lu, Wei-Xue1; Zhou, Chuan2,4; Wu, Jia3
刊名KNOWLEDGE-BASED SYSTEMS
出版日期2016-12-01
卷号113页码:143-154
关键词Greedy algorithms Social network Influence maximization
ISSN号0950-7051
DOI10.1016/j.knosys.2016.09.020
英文摘要Influence maximization aims to find a set of highly influential nodes in a social network to maximize the spread of influence. Although the problem has been widely studied, it is still challenging to design algorithms to meet three requirements simultaneously, i.e., fast computation, guaranteed accuracy, and low memory consumption that scales well to a big network. Existing heuristic algorithms are scalable but suffer from unguaranteed accuracy. Greedy algorithms such as CELF [1] are accurate with theoretical guarantee but incur heavy simulation cost in calculating the influence spread. Moreover, static greedy algorithms are accurate and sufficiently fast, but they suffer extensive memory cost. In this paper, we present a new algorithm to enable greedy algorithms to perform well in big social network influence maximization. Our algorithm recursively estimates the influence spread using reachable probabilities from node to node. We provide three strategies that integrate memory cost and computing efficiency. Experiments demonstrate the high accuracy of our influence estimation. The proposed algorithm is more than 500 times faster than the CELF algorithm on four real world data sets. (C) 2016 Elsevier B.V. All rights reserved.
资助项目973 Program[2013CB329605] ; NSFC[61502479] ; NSFC[61372191] ; NSFC[61572492] ; Strategic Leading Science and Technology Projects of CAS[XDA06030200] ; Australian Research Council (ARC) Discovery Projects[DP140100545] ; China Scholarship Council Foundation[201206410056]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000387519500013
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/24084]  
专题应用数学研究所
通讯作者Wu, Jia
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China
3.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst QCIS, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Lu, Wei-Xue,Zhou, Chuan,Wu, Jia. Big social network influence maximization via recursively estimating influence spread[J]. KNOWLEDGE-BASED SYSTEMS,2016,113:143-154.
APA Lu, Wei-Xue,Zhou, Chuan,&Wu, Jia.(2016).Big social network influence maximization via recursively estimating influence spread.KNOWLEDGE-BASED SYSTEMS,113,143-154.
MLA Lu, Wei-Xue,et al."Big social network influence maximization via recursively estimating influence spread".KNOWLEDGE-BASED SYSTEMS 113(2016):143-154.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。