中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction

文献类型:期刊论文

作者You, Zhu-Hong1; Huang, Zhi-An2; Zhu, Zexuan2; Yan, Gui-Ying3; Li, Zheng-Wei4; Wen, Zhenkun2; Chen, Xing5
刊名PLOS COMPUTATIONAL BIOLOGY
出版日期2017-03-01
卷号13期号:3页码:22
ISSN号1553-734X
DOI10.1371/journal.pcbi.1005455
英文摘要In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations.
资助项目National Natural Science Foundation of China[11301517] ; National Natural Science Foundation of China[11631014] ; National Natural Science Foundation of China[61471246] ; National Natural Science Foundation of China[11371355] ; National Natural Science Foundation of China[61572506] ; National Natural Science Foundation of China[61572328] ; Guangdong Foundation of Outstanding Young Teachers in Higher Education Institutions[Yq2013141] ; Guangdong Special Support Program of Top-notch Young Professionals[2014TQ01X273] ; China-UK Visual Information Processing Lab
WOS研究方向Biochemistry & Molecular Biology ; Mathematical & Computational Biology
语种英语
WOS记录号WOS:000398031900018
出版者PUBLIC LIBRARY SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/25100]  
专题应用数学研究所
通讯作者Zhu, Zexuan; Chen, Xing
作者单位1.Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
2.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
4.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou, Peoples R China
5.China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou, Peoples R China
推荐引用方式
GB/T 7714
You, Zhu-Hong,Huang, Zhi-An,Zhu, Zexuan,et al. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction[J]. PLOS COMPUTATIONAL BIOLOGY,2017,13(3):22.
APA You, Zhu-Hong.,Huang, Zhi-An.,Zhu, Zexuan.,Yan, Gui-Ying.,Li, Zheng-Wei.,...&Chen, Xing.(2017).PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.PLOS COMPUTATIONAL BIOLOGY,13(3),22.
MLA You, Zhu-Hong,et al."PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction".PLOS COMPUTATIONAL BIOLOGY 13.3(2017):22.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。