中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Generalization of the Sherman-Morrison-Woodbury formula involving the Schur complement

文献类型:期刊论文

作者Xu, Xuefeng
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2017-09-15
卷号309页码:183-191
关键词Sherman-Morrison-Woodbury formula Moore-Penrose inverse Schur complement
ISSN号0096-3003
DOI10.1016/j.amc.2017.03.039
英文摘要Let X is an element of C-mxm and Y is an element of C-nxn be nonsingular matrices, and let N is an element of C-mxn. Explicit expressions for the Moore-Penrose inverses of M = XNY and a two-by-two block matrix, under appropriate conditions, have been established by Castro-Gonzalez et al. [Linear Algebra Appl. 471 (2015) 353-368]. Based on these results, we derive a novel expression for the Moore-Penrose inverse of A+UV* under suitable conditions, where A is an element of C-mxn, U is an element of C-mxr, and V is an element of C-nxr In particular, if both A and I + V*A(-1)U are nonsingular matrices, our expression reduces to the celebrated Sherman-Morrison-Woodbury formula. Moreover, we extend our results to the bounded linear operators case. (C) 2017 Elsevier Inc. All rights reserved.
语种英语
WOS记录号WOS:000401598800014
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/25390]  
专题中国科学院数学与系统科学研究院
通讯作者Xu, Xuefeng
作者单位Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Xu, Xuefeng. Generalization of the Sherman-Morrison-Woodbury formula involving the Schur complement[J]. APPLIED MATHEMATICS AND COMPUTATION,2017,309:183-191.
APA Xu, Xuefeng.(2017).Generalization of the Sherman-Morrison-Woodbury formula involving the Schur complement.APPLIED MATHEMATICS AND COMPUTATION,309,183-191.
MLA Xu, Xuefeng."Generalization of the Sherman-Morrison-Woodbury formula involving the Schur complement".APPLIED MATHEMATICS AND COMPUTATION 309(2017):183-191.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。