Local discontinuous Galerkin methods based on the multisymplectic formulation for two kinds of Hamiltonian PDEs
文献类型:期刊论文
作者 | Cai, Wenjun1; Sun, Yajuan2![]() |
刊名 | INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
![]() |
出版日期 | 2018 |
卷号 | 95期号:1页码:114-143 |
关键词 | Multisymplectic formulation Hamiltonian PDEs local discontinuous Galerkin method numerical flux conservation law |
ISSN号 | 0020-7160 |
DOI | 10.1080/00207160.2017.1335866 |
英文摘要 | This paper examines the novel local discontinuous Galerkin (LDG) discretization for Hamiltonian PDEs based on its multisymplectic formulation. This new kind of LDG discretizations possess one major advantage over other standard LDG method, which, through specially chosen numerical fluxes, states the preservation of discrete conservation laws (i.e. energy), and also the multisymplectic structure while the symplectic time integration is adopted. Moreover, the corresponding local multisymplectic conservation law holds at the units of elements instead of each node. Taking the nonlinear Schrodinger equation and the KdV equation as the examples, we illustrate the derivations of discrete conservation laws and the corresponding numerical fluxes. Numerical experiments by using the modified LDG method are demonstrated for the sake of validating our theoretical results. |
资助项目 | National Basic Research Program of China[2014 CB845906] ; ITER-China Program[2014GB124005] ; National Natural Science Foundation of China[41274103] ; National Natural Science Foundation of China[11271195] ; National Natural Science Foundation of China[11321061] ; National Natural Science Foundation of China[11271357] ; National Natural Science Foundation of China[41504078] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000428749300008 |
出版者 | TAYLOR & FRANCIS LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/29985] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Cai, Wenjun; Zhang, Huai |
作者单位 | 1.Nanjing Normal Univ, Sch Math Sci, Jiangsu Prov Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing, Peoples R China 3.Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Cai, Wenjun,Sun, Yajuan,Wang, Yushun,et al. Local discontinuous Galerkin methods based on the multisymplectic formulation for two kinds of Hamiltonian PDEs[J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS,2018,95(1):114-143. |
APA | Cai, Wenjun,Sun, Yajuan,Wang, Yushun,&Zhang, Huai.(2018).Local discontinuous Galerkin methods based on the multisymplectic formulation for two kinds of Hamiltonian PDEs.INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS,95(1),114-143. |
MLA | Cai, Wenjun,et al."Local discontinuous Galerkin methods based on the multisymplectic formulation for two kinds of Hamiltonian PDEs".INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 95.1(2018):114-143. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。