中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
C-1,C-1 regularity for degenerate complex Monge-Ampere equations and geodesic rays

文献类型:期刊论文

作者Chu, Jianchun1; Tosatti, Valentino2; Weinkove, Ben2
刊名COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
出版日期2018
卷号43期号:2页码:292-312
关键词C-1,C-1 regularity complex Monge-Ampere equations geodesic rays quasi-psh envelopes
ISSN号0360-5302
DOI10.1080/03605302.2018.1446167
英文摘要We prove a C-1,C-1 estimate for solutions of complex Monge-Ampere equations on compact Kahler manifolds with possibly nonempty boundary, in a degenerate cohomology class. This strengthens previous estimates of Phong-Sturm. As applications we deduce the local C-1,C-1 regularity of geodesic rays in the space of Kahler metrics associated to a test configuration, as well as the local C-1,C-1 regularity of quasi-psh envelopes in nef and big classes away from the non-Kahler locus.
资助项目NSF[DMS-1610278] ; NSF[DMS-1406164]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000428244800004
出版者TAYLOR & FRANCIS INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/30125]  
专题中国科学院数学与系统科学研究院
通讯作者Tosatti, Valentino
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing, Peoples R China
2.Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
推荐引用方式
GB/T 7714
Chu, Jianchun,Tosatti, Valentino,Weinkove, Ben. C-1,C-1 regularity for degenerate complex Monge-Ampere equations and geodesic rays[J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS,2018,43(2):292-312.
APA Chu, Jianchun,Tosatti, Valentino,&Weinkove, Ben.(2018).C-1,C-1 regularity for degenerate complex Monge-Ampere equations and geodesic rays.COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS,43(2),292-312.
MLA Chu, Jianchun,et al."C-1,C-1 regularity for degenerate complex Monge-Ampere equations and geodesic rays".COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 43.2(2018):292-312.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。