J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence
文献类型:期刊论文
作者 | Bufetov, Alexander I.1,2,3,4; Qiu, Yanqi5,6,7 |
刊名 | MATHEMATISCHE ANNALEN
![]() |
出版日期 | 2018-06-01 |
卷号 | 371期号:1-2页码:127-188 |
ISSN号 | 0025-5831 |
DOI | 10.1007/s00208-017-1627-y |
英文摘要 | We study Palm measures of determinantal point processes with J-Hermitian correlation kernels. A point process on the punctured real line is said to be balanced rigid if for any precompact subset , the difference between the numbers of particles of a configuration inside and is almost surely determined by the configuration outside B. The point process is said to have the balanced Palm equivalence property if any reduced Palm measure conditioned at 2n distinct points, n in and n in , is equivalent to the . We formulate general criteria for determinantal point processes with J-Hermitian correlation kernels to be balanced rigid and to have the balanced Palm equivalence property and prove, in particular, that the determinantal point processes with Whittaker kernels of Borodin and Olshanski are balanced rigid and have the balanced Palm equivalence property. |
资助项目 | A*MIDEX project - Programme "Investissements d'Avenir" of the Government of the French Republic[ANR-11-IDEX-0001-02] ; European Research Council (ERC) under the European Union's Horizon research and innovation programme[647133] ; Russian Federation[MD 5991.2016.1] ; Russian Academic Excellence Project '5-100' ; Programme "Investissements d'Avenir" of the Government of the French Republic[IDEX UNITI-ANR-11-IDEX-0002-02] ; Simons Foundation[346300] ; matching Polish MNiSW fund ; NSF of China[11688101] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000430469800003 |
出版者 | SPRINGER HEIDELBERG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/30194] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Qiu, Yanqi |
作者单位 | 1.Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR7373, 39 Rue F Juliot Curie, F-13453 Marseille, France 2.RAS, Steklov Math Inst, Moscow, Russia 3.Inst Informat Transmiss Problems, Moscow, Russia 4.Natl Res Univ Higher Sch Econ, Moscow, Russia 5.Univ Paul Sabatier, Inst Math Toulouse, CNRS, 118 Route Narbonne, F-31062 Toulouse 9, France 6.Chinese Acad Sci, Inst Math, AMSS, Beijing, Peoples R China 7.Hua Loo Keng Key Lab Math, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Bufetov, Alexander I.,Qiu, Yanqi. J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence[J]. MATHEMATISCHE ANNALEN,2018,371(1-2):127-188. |
APA | Bufetov, Alexander I.,&Qiu, Yanqi.(2018).J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence.MATHEMATISCHE ANNALEN,371(1-2),127-188. |
MLA | Bufetov, Alexander I.,et al."J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence".MATHEMATISCHE ANNALEN 371.1-2(2018):127-188. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。