中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes

文献类型:期刊论文

作者Shi, Z. G.1,2; Zhao, Y. M.1; Liu, F.3; Wang, F. L.1; Tang, Y. F.4,5
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2018-12-01
卷号338页码:290-304
关键词Multi-term time fractional diffusion-wave equation Nonconforming quasi-Wilson finite element Crank-Nicolson scheme Superclose and superconvergence Anisotropic meshes
ISSN号0096-3003
DOI10.1016/j.amc.2018.06.026
英文摘要The paper mainly focuses on studying nonconforming quasi-Wilson finite element fully-discrete approximation for two dimensional (2D) multi-term time fractional diffusion-wave equation (TFDWE) on regular and anisotropic meshes. Firstly, based on the Crank-Nicolson scheme in conjunction with L1-approximation of the time Caputo derivative of order alpha is an element of (1, 2), a fully-discrete scheme for 2D multi-term TFDWE is established. And then, the approximation scheme is rigorously proved to be unconditionally stable via processing fractional derivative skillfully. Moreover, the superclose result in broken H-1-norm is deduced by utilizing special properties of quasi-Wilson element. In the meantime, the global superconvergence in broken H-1-norm is derived by means of interpolation postprocessing technique. Finally, some numerical results illustrate the correctness of theoretical analysis on both regular and anisotropic meshes. (C) 2018 Elsevier Inc. All rights reserved.
资助项目National Natural Science Foundation of China[11771438] ; National Natural Science Foundation of China[11101381] ; National Natural Science Foundation of China[11471296] ; support program for scientific and technological innovation talents of universities in Henan province[2019]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000441871500023
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/31074]  
专题计算数学与科学工程计算研究所
通讯作者Zhao, Y. M.; Liu, F.
作者单位1.Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
2.Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Sichuan, Peoples R China
3.Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
4.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Shi, Z. G.,Zhao, Y. M.,Liu, F.,et al. Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes[J]. APPLIED MATHEMATICS AND COMPUTATION,2018,338:290-304.
APA Shi, Z. G.,Zhao, Y. M.,Liu, F.,Wang, F. L.,&Tang, Y. F..(2018).Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes.APPLIED MATHEMATICS AND COMPUTATION,338,290-304.
MLA Shi, Z. G.,et al."Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes".APPLIED MATHEMATICS AND COMPUTATION 338(2018):290-304.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。