中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
UPPER BOUND ESTIMATION OF THE SPECTRAL ABSCISSA FOR SWITCHED LINEAR SYSTEMS VIA COORDINATE TRANSFORMATIONS

文献类型:期刊论文

作者Lin, Meili1; Sun, Zhendong2,3
刊名KYBERNETIKA
出版日期2018
卷号54期号:3页码:576-592
关键词switched linear systems matrix set measure spectral abscissa coordinate transformations
ISSN号0023-5954
DOI10.14736/kyb-2018-3-0576
英文摘要In this paper, we develop computational procedures to approximate the spectral abscissa of the switched linear system via square coordinate transformations. First, we design iterative algorithms to obtain a sequence of the least mu(1) measure. Second, it is shown that this sequence is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the effectiveness of the proposed method.
资助项目National Natural Science Foundation of China[61733018] ; Young and Middle-aged Foundation of Fujian Education Research Grant[JAT160294]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000442061200009
出版者KYBERNETIKA
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/31104]  
专题系统科学研究所
通讯作者Sun, Zhendong
作者单位1.Fujian Univ Technol, Math & Phys Inst, Fuzhou 350118, Fujian, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Lin, Meili,Sun, Zhendong. UPPER BOUND ESTIMATION OF THE SPECTRAL ABSCISSA FOR SWITCHED LINEAR SYSTEMS VIA COORDINATE TRANSFORMATIONS[J]. KYBERNETIKA,2018,54(3):576-592.
APA Lin, Meili,&Sun, Zhendong.(2018).UPPER BOUND ESTIMATION OF THE SPECTRAL ABSCISSA FOR SWITCHED LINEAR SYSTEMS VIA COORDINATE TRANSFORMATIONS.KYBERNETIKA,54(3),576-592.
MLA Lin, Meili,et al."UPPER BOUND ESTIMATION OF THE SPECTRAL ABSCISSA FOR SWITCHED LINEAR SYSTEMS VIA COORDINATE TRANSFORMATIONS".KYBERNETIKA 54.3(2018):576-592.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。