The stabilizer for n-qubit symmetric states
文献类型:期刊论文
作者 | Shi, Xian1,2,3 |
刊名 | CHINESE PHYSICS B
![]() |
出版日期 | 2018-10-01 |
卷号 | 27期号:10页码:8 |
关键词 | symmetric states stabilizer group |
ISSN号 | 1674-1056 |
DOI | 10.1088/1674-1056/27/10/100311 |
英文摘要 | The stabilizer group for an n-qubit state vertical bar phi > is the set of all invertible local operators (ILO) g = g(1 )circle times g(2) circle times ... g(n), g(i) is an element of L (2,C) such that vertical bar phi > = g vertical bar phi >. Recently, Gour et al. [Gour G, Kraus B and Wallach N R 2017 J. Math. Phys. 58 092204] presented that almost all n-qubit states vertical bar psi > own a trivial stabilizer group when n >= 5. In this article, we consider the case when the stabilizer group of an n-qubit symmetric pure state vertical bar psi > is trivial. First we show that the stabilizer group for an n-qubit symmetric pure state vertical bar phi > is nontrivial when n <= 4. Then we present a class of n-qubit symmetric states vertical bar phi > with a trivial stabilizer group when n >= 5. Finally, we propose a conjecture and prove that an n-qubit symmetric pure state owns a trivial stabilizer group when its diversity number is bigger than 5 under the conjecture we make, which confirms the main result of Gour et al. partly. |
语种 | 英语 |
WOS记录号 | WOS:000448161800001 |
出版者 | IOP PUBLISHING LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/31404] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Shi, Xian |
作者单位 | 1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, UTS AMSS Joint Res Lab Quantum Computat & Quantum, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Shi, Xian. The stabilizer for n-qubit symmetric states[J]. CHINESE PHYSICS B,2018,27(10):8. |
APA | Shi, Xian.(2018).The stabilizer for n-qubit symmetric states.CHINESE PHYSICS B,27(10),8. |
MLA | Shi, Xian."The stabilizer for n-qubit symmetric states".CHINESE PHYSICS B 27.10(2018):8. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。