中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Concentrating standing waves for the fractional Schr?dinger equation with critical nonlinearities

文献类型:期刊论文

作者Li,Suhong1,2; Ding,Yanheng2; Chen,Yu2
刊名Boundary Value Problems
出版日期2015-12-24
卷号2015期号:1
关键词ground state concentration standing waves nonlocal 35Q40 49J35
ISSN号1687-2770
DOI10.1186/s13661-015-0507-1
英文摘要AbstractWe study the following nonlocal Schr?dinger equations: Iε2s(?Δ)su+V(x)u=W(x)f(u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& \varepsilon^{2s}(-\Delta)^{s}u+V(x)u=W(x)f(u), \end{aligned}$$ \end{document}IIε2s(?Δ)su+V(x)u=W(x)(f(u)+u2s??1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& \varepsilon^{2s}(-\Delta)^{s}u+V(x)u=W(x) \bigl(f(u)+u^{2^{*}_{s}-1}\bigr), \end{aligned}$$ \end{document} for u∈Hs(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u\in H^{s}( \mathbb{R}^{N})$\end{document}, where f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)$\end{document} is superlinear and subcritical, 2s?=2NN?2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{*}_{s}= \frac{2N}{N-2s}$\end{document} if N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N>2s$\end{document}. V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document} and W(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W(x)$\end{document} are sufficiently smooth potential with infV(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf V(x)>0$\end{document}, infW(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf W(x)>0$\end{document}, and ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon>0$\end{document} is a small number. Under proper assumptions, we explore the existence, concentration phenomenon, convergence, and decay estimate of semiclassical solutions of (I) and (II), respectively. Compared with some existing issues, the most interesting results obtained here are therefore: the concentration phenomenon depends on competing potential functions; the nonlocal critical problem (II) is considered; unlike the classical case s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s=1$\end{document}, the decay estimate of solution to (I) or (II) is of polynomial instead of exponential form, due to the nonlocal effect.
语种英语
WOS记录号BMC:10.1186/S13661-015-0507-1
出版者Springer International Publishing
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/302]  
专题数学所
通讯作者Li,Suhong
作者单位1.Hebei Normal University of Science and Technology; Institute of Mathematics and Information Technology
2.Chinese Academy of Sciences; Institute of Mathematics, Academy of Mathematics and Systems Science
推荐引用方式
GB/T 7714
Li,Suhong,Ding,Yanheng,Chen,Yu. Concentrating standing waves for the fractional Schr?dinger equation with critical nonlinearities[J]. Boundary Value Problems,2015,2015(1).
APA Li,Suhong,Ding,Yanheng,&Chen,Yu.(2015).Concentrating standing waves for the fractional Schr?dinger equation with critical nonlinearities.Boundary Value Problems,2015(1).
MLA Li,Suhong,et al."Concentrating standing waves for the fractional Schr?dinger equation with critical nonlinearities".Boundary Value Problems 2015.1(2015).

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。