Multiple solutions of nonlinear elliptic equations for oscillation problems
文献类型:期刊论文
作者 | Li, C; Ding, YH; Li, SJ |
刊名 | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
![]() |
出版日期 | 2005-03-15 |
卷号 | 303期号:2页码:477-485 |
关键词 | mountain pass theorem half-order intervals oscillating problems |
ISSN号 | 0022-247X |
DOI | 10.1016/j.jmaa.2004.08.047 |
英文摘要 | We discussed oscillating equations with Neumann boundary value in [Nonlinear Anal. 54 (2003) 431-443] and [J. Math. Anal. Appl. 298 (2004) 14-32] and prove the existence of infinitely many nonconstant solutions. However, it seems difficult to find infinitely many disjoint order intervals for oscillating equations with Dirichlet boundary value. To get rid of this difficulty, in this paper, we build up a mountain pass theorem in half-order intervals and use it to study oscillating problems with Dirichlet boundary value in which we only have the existence of super-solutions (or sub-solutions) and obtain new results on the exactly infinitely many solutions. (C) 2004 Elsevier Inc. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000227390200009 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/1615] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Li, C |
作者单位 | 1.Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China 2.Tsing Hua Univ, Inst Math, Acad Math & Syst Sci, Beijing 100084, Peoples R China 3.Acad Sinica, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Li, C,Ding, YH,Li, SJ. Multiple solutions of nonlinear elliptic equations for oscillation problems[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,2005,303(2):477-485. |
APA | Li, C,Ding, YH,&Li, SJ.(2005).Multiple solutions of nonlinear elliptic equations for oscillation problems.JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,303(2),477-485. |
MLA | Li, C,et al."Multiple solutions of nonlinear elliptic equations for oscillation problems".JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 303.2(2005):477-485. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。