中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Tree diagram Lie algebras of differential operators and evolution partial differential equations

文献类型:期刊论文

作者Xu, Xiaoping
刊名JOURNAL OF LIE THEORY
出版日期2006
卷号16期号:4页码:691-718
关键词tree diagram Lie algebra of differential operators abelian ideal evolution partial differential equation Campbell-Hausdorff formula
ISSN号0949-5932
英文摘要A tree diagram is a tree with positive integral weight on each edge, which is a notion generalized from the Dynkin diagrams of finite-dimensional simple Lie algebras. We introduce two nilpotent Lie algebras and their extended solvable Lie algebras associated with each tree diagram. The solvable tree diagram Lie algebras turn out to be complete Lie algebras of maximal rank analogous to the Borel subalgebras of finite-dimensional simple Lie algebras. Their abelian ideals are completely determined. Using a high-order Campbell-Hausdorff formula and certain abelian ideals of the tree diagram Lie algebras, we solve the initial value problem of first-order evolution partial differential equations associated with nilpotent tree diagram Lie algebras and high-order evolution partial differential equations, including heat conduction type equations related to generalized Tricomi operators associated with trees.
语种英语
WOS记录号WOS:000241680500004
出版者HELDERMANN VERLAG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/2961]  
专题数学所
通讯作者Xu, Xiaoping
作者单位Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Xu, Xiaoping. Tree diagram Lie algebras of differential operators and evolution partial differential equations[J]. JOURNAL OF LIE THEORY,2006,16(4):691-718.
APA Xu, Xiaoping.(2006).Tree diagram Lie algebras of differential operators and evolution partial differential equations.JOURNAL OF LIE THEORY,16(4),691-718.
MLA Xu, Xiaoping."Tree diagram Lie algebras of differential operators and evolution partial differential equations".JOURNAL OF LIE THEORY 16.4(2006):691-718.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。