Global well-posedness for 2D polymeric fluid models and growth estimate
文献类型:期刊论文
作者 | Masmoudi, Nader1; Zhang, Ping2![]() |
刊名 | PHYSICA D-NONLINEAR PHENOMENA
![]() |
出版日期 | 2008-07-15 |
卷号 | 237期号:10-12页码:1663-1675 |
关键词 | nonlinear Fokker-Planck equations Navier-Stokes equations micro-macro interactions global well-posedness |
ISSN号 | 0167-2789 |
DOI | 10.1016/j.physd.2008.03.020 |
英文摘要 | Motivated by [P. Constantin, N. Masmoudi, Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D, Comm. Math. Phys. 278 (2008) 179-191; F. Lin, Ping Zhang, Zhifei Zhang, On the global existence of smooth solution to the 2-D FENE dumbbell model, Comm. Math. Phys. 277 (2008) 531-553], we prove the global existence of smooth solutions to a coupled microscopic-macroscopic model for polymeric fluid in 2D under the co-rotational assumption. Furthermore, we provide an estimate on the time growth of these solutions. Our method is general and can be applied to the co-rotational FENE model and to the rod-like model without the co-rotational assumption. (c) 2008 Elsevier B.V. All rights reserved. |
WOS研究方向 | Mathematics ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000257529200023 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/5299] ![]() |
专题 | 数学所 |
通讯作者 | Masmoudi, Nader |
作者单位 | 1.NYU, Courant Inst, New York, NY 10012 USA 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China 3.Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China |
推荐引用方式 GB/T 7714 | Masmoudi, Nader,Zhang, Ping,Zhang, Zhifei. Global well-posedness for 2D polymeric fluid models and growth estimate[J]. PHYSICA D-NONLINEAR PHENOMENA,2008,237(10-12):1663-1675. |
APA | Masmoudi, Nader,Zhang, Ping,&Zhang, Zhifei.(2008).Global well-posedness for 2D polymeric fluid models and growth estimate.PHYSICA D-NONLINEAR PHENOMENA,237(10-12),1663-1675. |
MLA | Masmoudi, Nader,et al."Global well-posedness for 2D polymeric fluid models and growth estimate".PHYSICA D-NONLINEAR PHENOMENA 237.10-12(2008):1663-1675. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。