中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
L-2 DECAY OF SOLUTIONS TO A MICRO-MACRO MODEL FOR POLYMERIC FLUIDS NEAR EQUILIBRIUM

文献类型:期刊论文

作者He, Lingbing1; Zhang, Ping2
刊名SIAM JOURNAL ON MATHEMATICAL ANALYSIS
出版日期2008
卷号40期号:5页码:1905-1922
关键词L-2 decay micro-macro model Fourier transform
ISSN号0036-1410
DOI10.1137/07712031
英文摘要In this paper, we consider the long time decay of the L-2 norm to the global solutions (u,psi) constructed in [F.-H. Lin, C. Liu, and P. Zhang, Comm. Pure Appl. Math., 60 ( 2007), pp. 838-866] for a micro-macro model of polymeric fluids near equilibrium ( 0, M). Under the additional assumption that u(0) is an element of (H) over dot(-k) (R-3), (psi(0) -M)/ root M is an element of L-2 (R-q(3); (H) over dot(-k) (R-x(3))), we prove that (u(t), psi(t)) tends to (0, M) as t goes to infinity with decaying rate parallel to u(t)parallel to(2)(L) <= C (1+t)-b/2 and parallel to phi(t)-M/root M parallel to L-2 <= C(1+t)-(b+1/2) for b = min (K, 3/2. In general, without this additional assumption, we shall present an explicit long time decaying formula for parallel to u(t)parallel to(L2) and parallel to psi(t)-M/root M parallel to(2)(L).
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000263103600007
出版者SIAM PUBLICATIONS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/5447]  
专题数学所
通讯作者He, Lingbing
作者单位1.Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
2.CAS, Acad Math & Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
He, Lingbing,Zhang, Ping. L-2 DECAY OF SOLUTIONS TO A MICRO-MACRO MODEL FOR POLYMERIC FLUIDS NEAR EQUILIBRIUM[J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS,2008,40(5):1905-1922.
APA He, Lingbing,&Zhang, Ping.(2008).L-2 DECAY OF SOLUTIONS TO A MICRO-MACRO MODEL FOR POLYMERIC FLUIDS NEAR EQUILIBRIUM.SIAM JOURNAL ON MATHEMATICAL ANALYSIS,40(5),1905-1922.
MLA He, Lingbing,et al."L-2 DECAY OF SOLUTIONS TO A MICRO-MACRO MODEL FOR POLYMERIC FLUIDS NEAR EQUILIBRIUM".SIAM JOURNAL ON MATHEMATICAL ANALYSIS 40.5(2008):1905-1922.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。