Scalar curvature equation on S-n, Part II: Analytic characterizations
文献类型:期刊论文
作者 | Ji, Min![]() |
刊名 | JOURNAL OF DIFFERENTIAL EQUATIONS
![]() |
出版日期 | 2009-01-15 |
卷号 | 246期号:2页码:788-818 |
关键词 | Prescribing scalar curvature Analytic conditions Topological conditions Sphere Symmetry |
ISSN号 | 0022-0396 |
DOI | 10.1016/j.jde.2008.04.012 |
英文摘要 | This is the second part of a series devoting to the study of the prescribing scalar curvature problem on the standard sphere of any dimension. By studying topological degrees for certain abstract maps. we will give explicit analytic conditions on the scalar Curvature function which verily the topological degree conditions given in the first part of the series to ensure the solvability of the problem. General existence results for the prescribing scalar curvature equation will be given on both H-symmetric and sub-H-symmetric solutions corresponding to H-symmetric scalar Curvature functions, as well as on non-symmetric solutions corresponding to symmetric-like scalar curvature functions. Special axisymmetric and axisymmetric-like cases will be also considered. Our analysis will be based on a general approach of dimension reductions and degree calculations by taking advantage of symmetries and symmetric-like properties. (C) 2008 Elsevier Inc. All rights reserved. |
语种 | 英语 |
WOS记录号 | WOS:000261714900014 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/8344] ![]() |
专题 | 数学所 |
通讯作者 | Ji, Min |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Ji, Min. Scalar curvature equation on S-n, Part II: Analytic characterizations[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2009,246(2):788-818. |
APA | Ji, Min.(2009).Scalar curvature equation on S-n, Part II: Analytic characterizations.JOURNAL OF DIFFERENTIAL EQUATIONS,246(2),788-818. |
MLA | Ji, Min."Scalar curvature equation on S-n, Part II: Analytic characterizations".JOURNAL OF DIFFERENTIAL EQUATIONS 246.2(2009):788-818. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。